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Abstract. With the rapid evolution of the wind energy sector, there is an ever-increasing need to create value from the vast

amounts of data made available both from within the domain, as well as from other sectors. This article addresses the challenges

faced by wind energy domain experts in converting data into domain knowledge, connecting and integrating it with other

sources of knowledge, and making it available for use in next-generation artificial intelligence systems. To this end, this article

highlights the role that knowledge engineering can play in the digital transformation of the wind energy sector. It presents the5

main concepts underpinning Knowledge-Based Systems and summarises previous work in the areas of knowledge engineering

and knowledge representation in a manner that is relevant and accessible to wind energy domain experts. A systematic analysis

of the current state-of-the-art on knowledge engineering in the wind energy domain is performed, with available tools put

into perspective by establishing the main domain actors and their needs, as well as identifying key problematic areas. Finally,

recommendations for further development and improvement are provided.10

1 Introduction

1.1 Extracting value from data

In the wind energy sector, it is becoming increasingly important to create value from data (Veers et al., 2019). To this end,

vast amounts of data generated by various sources, including sensors and other monitoring systems, need to be effectively

structured and represented in a way that can be easily understood and processed by both Artificial Intelligence (AI) systems15

and humans. The digitalisation of the wind energy sector is one of the key drivers for reducing costs and risks over the whole

wind energy project life cycle (Klonari et al., 2021). The digitalisation process encompasses solutions such as digital twins,

decision support systems and AI systems, some of which need to still be developed, in order to contribute to reducing operation
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and maintenance costs, for increasing the amount of energy delivered, as well as for maximising the efficiency of wind energy

systems. In this context, the term Knowledge-Based Systems (KBS) refers to AI systems that formalize knowledge as rules,20

logical expressions, and conceptualisations (Akerkar and Sajja, 2009; Davis, 1986). Such systems can be realised as AI-enabled

digital twins or decision support systems that rely on databases of knowledge (also referred to as knowledge bases or knowledge

graphs), which contain machine-readable facts, rules, and logics about a domain of interest, to assist with problem-solving and

decision-making (Hogan et al., 2021).

1.2 The need for managing data25

Currently, the stage for the digital transformation in wind energy is set by the democratisation of computing, technological

maturity of AI systems, and the reduction in costs of data storage and sensing technologies. Along with this, a necessity to

structure, organise, manage, and make use of substantial amounts of operational and synthetic data has emerged (Naghib et al.,

2022). However, it is often the case in industrial settings that data is not treated as an asset. Even though the importance of

efficient data management has already been recognised by major stakeholders both in industry and academia (Veers et al.,30

2019), only a few organisations can afford to have a person dedicated to oversee data-related activities (Clifton et al., 2023).

This has left many domain experts one-on-one with the problems related to the actual, practical use of data (Barber et al.,

2023c). The FAIR data approach, stating that data should be Findable, Accessible, Interoperable and Re-usable, introduced

by Wilkinson et al. (2016), provides general data management guiding principles. However, FAIR has mostly been applied

in academic settings, and there is a disconnect between conceptual or descriptive guidelines and concrete implementations or35

defined prescriptions and practices. Several groups such as GO FAIR1, the Data Readiness Group2, and the Research Data

Alliance3 have emerged in recent years in an effort to provide practical implementation recommendations and solutions for

increasing the FAIRness of data. Nevertheless, creating FAIR data frameworks still remains one of the major challenges in the

digitalisation process (Wierling et al., 2021).

1.3 The challenge addressed in this paper40

Wind energy experts facing the challenge of managing their data will most likely find themselves overwhelmed by unfamiliar

terms such as data schema, relational data-model, and metadata. They may ask questions such as “What are the differences

between a Structured Query Language (SQL) database, graph database, and an object store?”, “Which one would fit best to my

data types?” or “How do I publish my data on the web so that it conforms to the FAIR principles?”. The same holds true during

practical development of AI-enabled systems. In this context, a wind energy domain expert is increasingly expected to grasp45

concepts such as schema/ontology development, logic, and semantic networks, among others. Moreover, they often have to in-

teract with a rather complex technology stack that includes data formats like Extensible Markup Language (XML), JavaScript

Object Notation (JSON) or Semantic Web Technologies4 such as Resource Description Framework (RDF) (Schreiber and Rai-

1https://www.go-fair.org/, Cited on 10.09.2023
2https://datareadiness.eng.ox.ac.uk/, Cited on 15.09.2023
3https://www.rd-alliance.org/, Cited on 16.09.2023
4https://www.w3.org/standards/semanticweb/
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mond, 2014), SPARQL Protocol and RDF Query Language (SPARQL) (Group, 2013), Web Ontology Language (OWL) (Hit-

zler et al., 2009), etc. These issues are particularly acute in the wind energy sector due to the fact that the industry is relatively50

new, the systems are highly multidisciplinary, and the relevant disciplines are currently highly siloed (Clifton et al., 2023).

Additionally, the modelling and measurement uncertainties are largely due to the high complexity of wind energy systems and

difficulties in measuring operational data. As a result of all the factors mentioned above, wind energy data is often hidden

but, even worse, ill managed, missing documentation and context, uncertain or incomplete. Recent efforts that have started

to address the problem of data and knowledge management in the wind energy domain have not yet gained traction in the55

community. This is due to difficulties of cross-domain interactions, knowledge silos, lack of awareness among stakeholders,

and other cultural and organisational factors (Heidenreich and Mattes, 2022; Clifton et al., 2023; Kirkegaard et al., 2023). The

need for holistic knowledge-based systems, however, is increasingly providing the necessary external pressure for the natural

evolution and emergence of commonly accepted and adopted paradigms.

1.4 Contribution of this paper60

To address the aforementioned challenges, this paper presents the main concepts and summarises previous work in the areas

of knowledge engineering and knowledge representation in a manner that is relevant and accessible to wind energy domain

experts. The insights presented in this article are not only beneficial for the wind energy sector, but also applicable to other

domains undergoing digitalisation.

The paper is structured as follows: Section 2 presents the scope of knowledge engineering activities and the common roles65

in the overall context of digitalisation. Section 3 presents a conceptual overview of the knowledge representation problem in

general and introduces the basic concepts, or vocabulary, of the knowledge engineering domain. Section 4 discusses practical

technological implementations that enable the adoption of knowledge representation solutions, with a specific focus on Web

technologies. Section 5 discusses how the knowledge representation technologies and knowledge engineering techniques en-

able the development of AI systems, in particular, AI-enabled digital twins. Section 6 presents a systematic and methodological70

overview of the current initiatives by the wind energy community in the knowledge engineering domain. Recommendations

for fostering a healthy and thriving wind energy knowledge engineering ecosystem are introduced in Section 7, followed by

the concluding remarks in Section 8.

2 Knowledge engineering: scope and activities

Knowledge engineering refers to activities related to the development of AI systems capable of processing, interpreting, and75

performing logical operations on structured data Studer et al. (1998). Knowledge representation refers to representing, or

structuring, real world information in a way that renders this exploitable by AI systems. This involves choosing an appropriate

representation language or formalism and determining how to map knowledge from the real world to the chosen representation.

Knowledge engineering activities often overlap with data management. In particular, the creation of conceptual data models

(also referred to as semantic data models), which, conventionally, fall under the umbrella of data management, are also in-80
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Figure 1. Roles and activities overlap during AI system design, development and deployment. Data manager and data engineer often provide
a supporting role for a data scientist or a knowledge engineer.

strumental in the development of KBSs. When designing a KBS, conceptual data models are used to represent the knowledge

needed by the said system. In a broader context, data management also involves activities related to the storage and mainte-

nance of this knowledge. This includes defining how the knowledge is structured and stored, how it is accessed and updated,

how its quality is ensured, and how it is integrated with other systems. Although, similarity to knowledge representation, data

modelling activities also involve the structuring of data, the focus is slightly different from that of knowledge engineering.85

Knowledge engineering is focused on capturing, representing knowledge, and logical reasoning and inference. Data manage-

ment is focused on the overall process of collecting, storing, and using data within an organisation. As part of this process,

conceptual data modelling is focused on the identification and organisation of key concepts and relationships.

In Figure 1 some typical roles and activities are presented. It is important to note that, in practice, it might not always be

possible to clearly distinguish between these actors in a given organisation and there is no uniquely agreed upon classification.90

For example, roles like data modeller and/or database designer are often considered to reflect a narrower role of a data manager,

as opposed to standalone positions. Terms like data steward are in some cases used interchangeably with data manager, while

in others are used to denote more specific roles like the ones related to data governance. For the purpose of this paper, we
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distinguish the following roles: data manager, data engineer, data scientist, and knowledge engineer. A wind energy domain

expert involved in the process of digitalisation is likely to interact with all these types of actors. This requires understanding95

of the jargon, workflows, and methodologies used in each respective domain. For this reason, some of the concepts from data

science, data management, and data engineering are also discussed in the present work. However, given the vastness of these

topics, this paper cannot be an exhaustive source on all these matters, but rather a simplified overview for a domain scientist of

important concepts, directing the readers to the relevant works.

3 Knowledge representation: conceptual overview100

In order to understand the practical application of knowledge engineering, it is important to be familiar with the concepts of

knowledge representation and formal systems in general. The starting point of the discussion is human-centric. It revolves

around the human perception, interpretation, and understanding of the world. The question of how humans model the world is

an open-ended one, and, consequently, the question of how the knowledge should be represented and shared does not have a

unique answer. This discussion about the nature and organisation of the world is the area of interest of a branch of philosophy105

called Ontology. In a knowledge engineering context, the underlying assumption is that the world, or domain of interest,

consists of entities, relationships, and concepts.

Knowledge representation deals with the problem of capturing the meaning of facts (i.e. the aforementioned entities, re-

lationships, and concepts) from a certain domain of interest in a formal way as structured data. For example, consider the

following informal text:110

An IET group at OST acquired an Aventa AV-7 wind turbine, located in Winterthur and has instrumented one of the blades with

a novel pressure measurement system. The dataset produced by the system for the month of July is now available upon request.

Additionally, during the measurement campaign wind turbine SCADA data was acquired and the inflow characteristics were

measured with a LiDAR.

A wind energy domain expert, especially a researcher with a background in experimental measurements, would not find115

it particularly difficult to understand and interpret this description. As a result, they can infer some additional information

about the mentioned dataset. That is to say: the text provides contextual information about measurements, that a domain expert

uses to assign meaning to particular data. However, there are several limitations to this representation of knowledge. First,

this information is meant to be processed by a human (as opposed to some automated algorithm) with some command of the

English language. Secondly, the reader must be a domain expert to infer the context and purpose of the text as well as resolve120

the inherent ambiguity of some of the statements. The underlying assumption is that a domain expert will rely on some informal

logical framework (Groarke, 2022) and personal domain knowledge.
Sidenote:

The term formal is mostly used as in “formal system” (The Editors of Encyclopaedia Britannica, 2012). However, since AI systems are compu-

tational systems, i.e. machines, performing data manipulation based on a set of instructions (i.e. algorithms), in a knowledge engineering context,125

“formal” may also mean “machine-interpretable”. Informal is mostly used to denote something outside of such formal setting, for example

assertions made using natural language (Johnson and Blair, 2002).
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In the example provided, some inferences are trivial for a human, while others are more complicated. For instance, it is clear

that Aventa AV-7 is a type of a wind turbine. A domain expert will also have an understanding of what SCADA data may

contain or the what LiDAR measurements may look like. Meanwhile, other information is not as straightforward. It is not clear130

what IET or OST is, especially if the text is presented by itself and not as a blog post on the university web page. Similarly,

“the month of July” is not enough to pinpoint the time period without any additional context like the time and date when the

text was written. Some information is fully absent, such as how the data is structured, what are the units used, whether the

dataset is free and under what licence it is distributed. This example brings up the concepts of semantics, pragmatics, context,

metadata, language, logic, open world vs. closed world assumption, and ontology, which will be discussed below.135

3.1 Understanding representation: semantics, pragmatics, context, and metadata

The process of understanding and interpreting a particular representation involves semantics, pragmatics and context. Seman-

tics is the study of meaning in language, and is concerned with the relationship between words or symbols and their counterparts

in the real world (Cann et al., 2009). In the knowledge representation context, comprehensive semantics ensure that the terms

used to describe data and information are unambiguous and clearly defined. Pragmatics, on the other hand, is concerned with140

the social and cultural factors that influence the use of language (Andersen and Aijmer, 2011). In knowledge representation,

pragmatics ensures that the meaning of a term or concept is understood in the appropriate social and cultural context. This can

be particularly important when working with data or information from different disciplines or cultures.

In the realm of knowledge representation, context is pivotal as it impacts the interpretation of information, and ultimately

its meaning. Context may encompass a variety of factors, including the data source, the conditions under which the data145

was collected, its intended use, or its relationship to other data. Metadata is data that provides this context as structured

information about a data set. It is a form of formalised context, to make the representation not only human-interpretable

but also machine-interpretable. For example, when publishing aerodynamic measurements and SCADA data on the Web,

additional context can be provided by wind turbine characteristics. This contextual information can be expressed in a natural

language (like English), in a form of technical specification sheets provided by the producer, or, ultimately, as some kind of150

formal representation. Such metadata would enable a data scientist to draw more meaningful conclusions while performing

data analysis. For instance, the knowledge of the location along with historical weather data can provide understanding that a

clustered group of measurements is due to an icing event or the specification of wind turbine status codes can link measurements

to a certain wind turbine component failure. The relevant question in this case is how to represent the knowledge about a

particular wind turbine in a formal way. This is explored further as we discuss modelling languages, their expressive power,155

and formalising representations.

3.2 Expressing representation: language

In the example text given in the introduction to this section, the authors relied on the English language as a means of knowledge

expression. Similarly, knowledge engineers and data managers rely on modelling languages for knowledge representation and
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data structuring. On a fundamental level, the formal basis for modelling languages is provided by logic. Any conceptual model160

can be specified using some kind of logical language.

Definitions:

Modelling languages are formal languages that express information, knowledge or systems in a structure that is defined using a certain syntax

(i.e. a consistent set of rules). In this paper, we will discuss the most notable knowledge modelling languages in the context of knowledge

engineering, computer sciences and information technologies. However, in the broader context of expressing knowledge, systems, and processes165

many other modelling language exist such as Unified Modeling Language (UML), Integration Definition (IDEF) languages, Petri Net, to name a

few.

Logic languages are formal languages that provide a way to express logical statements and reason about them. Logic languages include syntax

rules and a set of semantics that allow users to formally define and manipulate logical statements. Examples of logic languages include predicate

logic, description logics (DL), first-order logic (FOL), and fuzzy logic.170

For example, to represent the fact that Aventa AV-7 is a type of a wind turbine, it is possible to use first-order logic expres-

sions:

∀x : AventaAV7(x)→WindTurbine(x)

This statement can be read in English as “For all x, if x is a AventaAV7, then x is a wind turbine”. It is also possible to expresses

similar semantics using description logics (DL) expressions:175

AventaAV7⊑WindTurbine

This statement can be read as “All AventaAV7s are wind turbines”. These two statements in two different languages use

different syntax to convey similar (but not exactly the same) semantics.

The use of the logic languages in the context of information systems is rather impractical. As can be seen from the example

above, the construction of a rather simple fact using FOL is often verbose and complex. This verbosity and complexity can180

result in misunderstandings, errors, and increased difficulty in managing and manipulating the data. Hence, in the domain of

knowledge engineering and data modelling, specialised modelling languages are used, as discussed in Section 4.3.

3.3 Representation complexity: language expressive power

The choice of logic representation language depends on the desired semantics of the statements and on their complexity.

For example, a formal dataset description published on the Web that focuses only on the information presented, without a185

connection to other concepts or attributing additional semantics to the relationships with other entities does not require high

expressivity. The metadata in such description might include fields for the specific turbine model (Aventa AV-7) and the location

(Winterthur). However, consider two statements about the OST-WindTurbine:

locatedIn(OST-WindTurbine,Winterthur)

locatedIn(OST-WindTurbine,Switzerland)190
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A more expressive language can define “locatedIn” to be a transitive relationship. If the system performing automated reasoning

also has access to the fact that Winterthur is located in Switzerland, then a second statement can be automatically inferred

without it being explicitly defined.

Even though, in general, most of the facts about the world can be described using FOL, it may be more practical to use

languages based on DL for certain representations. For example, DL is especially powerful in situations where the goal is to195

represent knowledge in a structured and formalised way, such as in the creation of ontologies (see Section 3.5 and Section 4.3).

At the same time, both FOL or DL are impractical for representing certain facts and knowledge, such as complex or dynamical

systems. While FOL can express relationships between objects and properties, it does not offer a good mechanism for express-

ing compositionality, causality, observations of the states of the system, and related uncertainties. To describe these in a formal

way, one would need to use a representation with different underlying theory. Recently, category theory formalisms have been200

proposed by Spivak and Kent (2012) for knowledge representation, to provide more expressive power in terms of composi-

tionality, which allows domain experts to describe how constitutive parts of complex systems are interrelated and combined

together. Additionally, applied category theory and type theory have been proposed as basis for various applications such as

modelling dynamic systems (Spivak, 2020; Jaz Myers, 2021; Lavore et al., 2022; Shapiro and Spivak, 2023; St. Clere Smithe,

2023), formalising co-design problems (Zardini et al., 2021), data management (Spivak, 2012; Johnson et al., 2012), and cre-205

ation of digital twins (Qi et al., 2022). For sequential decision making, value of information theory and Partially Observable

Markov Decision Process (POMDP) model has been used to express relationship between an agent and its dynamic system

environment along with related uncertainties (Papakonstantinou and Shinozuka, 2014; Andriotis et al., 2021), with applica-

tions in wind energy context (Morato et al., 2022; Liang et al., 2022; Hlaing et al., 2022). It should be noted that many of

the above-mentioned formalisms have not yet received wide-spread adoption and therefore often lack practical technological210

implementations (see Section 4), as opposed to DL and FOL. Moreover, in many use cases, wind energy domain experts still

rely on ad-hoc algorithms and models as discussed Section 6.

3.4 Representation assumptions: open world vs. closed world

The choice of logical language for knowledge representations can be influenced by the open world and closed world assump-

tions (OWA and CWA) (Magee, 2011). In the CWA, it is assumed that everything not known to be true is false. This assumption215

is used in some logical languages such as FOL. In this context, the goal is to explicitly state all the necessary information about

a domain and derive logical consequences based solely on this information. The CWA is useful in situations where the domain

is well defined and the data is complete. In contrast, the OWA states that everything not known to be true is simply unknown.

This assumption is used in some logical languages such as DL. In this context, the objective is to define a set of axioms and

a set of incomplete data. The logical consequences derived from these axioms and data are considered true until proven false.220

The OWA is useful in situations where the domain is complex, dynamic, and the data is incomplete.

Consider the task of creating a common representation of a wind turbine. When describing a wind turbine it is reasonable to

include information about the sensors and the control systems installed on it. However, as new sensing technologies and control

strategies are developed, wind turbines are upgraded to improve their performance and management. A particular wind turbine
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instance, at a given time, might not have been upgraded. In this case, the absence of data about the sensors is ambiguous: the225

wind turbine in question might not have sensors yet installed, the upgrade is not possible, or the information was not available

when the data was compiled. Interestingly, this question is related to the admission of "Null" values in databases. It can be

argued that if the information is incomplete, it should not be in the database in the first place. Of course, when dealing with a

complex domain such as wind energy and complex systems such as wind power plants, the idea of complete representation is

rather ludicrous.230

Sidenote:

Consider the statement : ∃x(WindTurbine(x)∧ ratedPower(x) > 5MW ). To evaluate this statement, and obtain a True or False answer,

we have to impose a certain restriction and assume complete knowledge of all the wind turbines and their power ratings in existence (or at least

in the domain of interest). In an open world assumption, on the other hand, the question of "existence" of a wind turbine that is rated for more

that 10MW of power generation (just like the existence of pink elephants and unicorns) remains, well, open.235

It is important to note that neither assumption is inherently superior—the choice between the two depends on the specific

application and the nature of the data and knowledge being represented. As mentioned above, some logical languages are

designed to work with the CWA, while others are designed to work with the OWA. For example, adopting an OWA and FOL

based representation would lead to undecidability. That is to say there is no algorithm to formally prove the "truthfulness" of

the statements made using this logic. The FOL is the underlying logic for Structured Query Language (SQL) databases (See240

Section 5.3). Thus these databases usually operate under CWA. The DL is the basis for Web Ontology Language (OWL), which

is discussed in Section 4.3.

3.5 Formalising representations: ontology

Ontology is a broadly used term that can take on different meanings. As mentioned in the introduction to this section, it can be

used to denote a branch of philosophy. In the context of knowledge engineering and KBS, however, ontology has been defined245

as “explicit specification of a conceptualisation” by Gruber (1993). Here, “explicit” means that the types of concepts used, and

the constraints on their use, are explicitly defined. That is to say, each concept, attribute, relationship, and rule in the ontology

is precisely articulated, often through formal semantics. This explicitness avoids ambiguity and fosters understanding, allowing

the ontology to serve as a shared and common description of a domain that can be communicated across people and systems.

In addition, being explicit in an ontology also means that it is machine-interpretable. This is crucial for automated processing,250

reasoning, and interoperability in computer systems. With explicit ontologies, computers can process the semantic meaning of

data, enabling more advanced and flexible uses of the data, such as inference and knowledge discovery.

“Conceptualisation,” in Gruber’s definition, refers to an abstract view or model of the world, i.e. the types of objects, con-

cepts, and other entities that are assumed to exist in a domain of interest and their associated properties and relationships. An

ontology, then, serves as a specific and concrete representation of that conceptualisation, allowing the underlying assumptions255

about the domain to be made explicit and facilitating their communication and processing.
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owns

manufacturer

model

EducationalOrganization

+identifier: String
+legalName: String

ost : EducationalOrganization

identifier = ”https://www.ost.ch”
legalName = ”OST - Ostschweizer Fachhochschule”

Product

+productID: String
+name: String
+countryOfAssembly: String

aventaAv7 : Product
productID = ”urn:ost:aventa:av-7”
name = ”Aventa AV-7 Wind Turbine”
countryOfAssembly = ”Switzerland”

Organization

+identifier: String
+legalName: String

aventa : Organization

identifier = ”https://ex.com/manufacturers/aventa”
legalName = ”Aventa”

ProductModel

+identifier: String
+name: String

av7 : ProductModel
identifier = ”https://ex.com/turbines/av-7”
name = ”AV-7”

Figure 2. Information about a specific wind turbine expressed with an UML diagram. A part of schema.org ontology contains instantiated
concepts of "EducationalOrganisation", "Organisation", "Product", and "Product Model". The concepts are connected by "isSubclassOf",
"owns", "model", and "manufacturer" relationships.

Sidenote:

It is possible to think of an ontology as a directed labelled graph, where each "concept" (equivalently: "type" or "class") is represented as a node,

and the edges represent the relationships (equivalently: "properties"). In fact, ontologies are often presented visually as a graph and expressed

using graphical languages, as exemplified in Figure 2.260

Given this general definition, Controlled Vocabularies, Formal Taxonomies, and Schemas are also ontologies. Similarly,

Conceptual (Semantic), Logical, and Physical Data Models can also be thought of as ontologies. Generally, the difference in

the use of these terms relates to the complexity (or “expressiveness”) of the specification, with the term “ontology” typically

being used to denote more expressive one (Lassila and McGuinness, 2001). In an effort to avoid ambiguity, some communities
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adopted an “umbrella” term semantic artefact (Le Franc et al., 2020) to denote conceptualisations with various degree of265

expressiveness, and reserve the term ontology only when referring to the most expressive conceptualisations.

Definitions:

In this paper we use different terms to describe various types of semantic artefacts.

A controlled vocabulary is used to describe a set of terms or phrases that have been pre-selected and authorised for use in a particular domain

or context. It provides a standardised way of naming and describing concepts, which helps to improve consistency and accuracy in indexing,270

searching, and retrieval of information. In some contexts the term may be used to refer to a specific set of terms or concepts without any explicit

relationships between them. However, in some fields the term may be used to denote a taxonomy.

A formal taxonomy is a hierarchical classification conceptualisation that organises concepts or objects based on their relationships to one another.

It is possible to view taxonomy as an ontology that includes only a subsumption relationship between classes. In practical terms it means that it

possible to express a relationship of a type isSublcassOf (or equivalently isA) between the classes, thus modelling class hierarchy. Some275

taxonomies may, however, include other types of hierarchical relationships. For example, the Simple Knowledge Organisation System (SKOS)

data model for taxonomy description defines semantic relationships of the type skos:broader, skos:narrower, skos:related, etc.

We use the term "taxonomy" in the latter, broader definition, thus including SKOS taxonomies.

A schema defines the relationships between different concepts and entities. In the knowledge engineering community, the term is used to refer

to simple conceptualisations, like the ones written using less expressive knowledge representation languages such as RDF Schema5. In data280

management community, schema is usually used to indicate a blueprint or framework that defines the structure and content of a particular type

of data or information (e.g JSON Schema for JSON data). It may specify the types of data elements that are allowed, their relationships to one

another, and the rules for encoding or validating them. We use term schema mostly in this last sense.

An ontology written in an expressive ontology language (See Section 4.3 for more discussion about ontology languages.), can represent rich,

complex knowledge about concepts and their inter-relationships. For example, ontologies expressed with OWL-DL can define transitive, inverse,285

reflexive, and irreflexive relationships, impose cardinality restrictions etc.

Another difference relates to the way and the context in which the specification is defined - a representation of a piece of

(meta)data in a JSONSchema would be called a schema, whilst the same representation expressed in Web Ontology Language

(OWL) would likely be referred to as an ontology. In the context of database design, a specification describing a structure of

a database would more likely be referred to as database schema or logical data model or logical schema, rather than as an290

ontology (Spyns et al., 2002). At the same time, an ontology that is populated with instances is often referred to as a knowledge

graph or a knowledge base rather than as a database (Heist et al., 2020). This is done to distinguish these representations from

relational databases (see Section 5.3). In this paper, the main focus is on the most expressive side of the ontology spectrum, as

these can describe and formalise more complex relationships, which can facilitate the creation of the type of AI system needed

for the digitalisation of wind energy, as discussed more in Section 5.295

Using the dataset publishing example, it is possible to demonstrate how semantic expressiveness increases when moving

from controlled vocabulary to ontology. Controlled vocabulary can include concepts (equivalently: "terms") like "wind turbine",

"pressure measurement system", "SCADA", and "LiDAR." Using a controlled vocabulary, it is possible to identify and label

these key concepts in the paragraph, but there is no explicit representation of the relationships between these concepts or

their properties. A taxonomy can include subsumption relationships between the concepts in the paragraph. For example,300

"LiDAR," and "pressure measurement system" can be subsumed by "measurement system." It is also possible to include other

relationships, such as part-of relationships between the wind turbine and its blades, or between the measurement system and the

5https://www.w3.org/wiki/SchemaVsOntology Cited on 01.10.2023
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turbine. A schema can include additional information about the properties of the concepts and their relationships. For example,

it can specify the expected attributes of the wind turbine, such as its manufacturer, capacity, and location. Moreover, a schema

may provide constraints that specify the relationships between these concepts: "the wind turbine’s location is specified by a pair305

of latitude and longitude coordinates." Finally, an ontology can further specify the meaning and relationships of the concepts in

a formal and machine-interpretable way. An aligned ontology will enable knowledge to be connected from different domains.

For instance, the use of an ontology of geographical names can help to connect wind turbine data with specific locations and

regions. Moreover, a formal ontology enables automated reasoning and inference of the concepts and their relationships, thus

new knowledge can be derived from the information provided. This can form a base for KBS such as digital twins or decision310

support systems, which are becoming increasingly important in wind energy in order to reduce costs and increase deployment.

In addition to semantic expressiveness, ontologies can be differentiated based on their scope or level of generality. Here it is

common to distinguish top-level, domain, application and task ontologies (Guarino, 1998).
Definitions:

Top-level ontologies provide a broad framework for organising concepts and relationships that are applicable across multiple domains or appli-315

cations. These are useful for inter-domain knowledge exchange.

Domain ontologies are aimed to capture domain-specific knowledge. They contain concepts and relationships that are relevant to a specific do-

main such as medicine or engineering. Adoption of these ontologies can ensure that the terminology used within a particular domain is consistent

and clear.

Application ontologies are designed to support a specific software application or system. These ontologies provide a more detailed and spe-320

cialised vocabulary that is tailored to the needs of the application.

Task ontologies are focused on the specific tasks or activities that need to be performed within a particular domain or application.

Developing, publishing and using ontologies needs an effective collaboration among the different actors introduced in Sec-

tion 2, and including domain experts, stakeholders, and target users, each with specific competencies and interests. Ontology

Development 101 by Noy and Mcguinness (2001) is a good starting point to familiarise oneself with the concept of ontologies,325

terminology used and development methods. Another ontology development methodology particularly well suited for applica-

tion and task ontologies and knowledge base development was proposed by De Nicola et al. (2005). This method focuses on

collaboration between domain experts and knowledge engineers during ontology development.

3.6 Common representation: standard

An ontology that is accepted and enforced by a certain community can be included in a standard. In the context of knowledge330

representation, a standard is a set of guidelines or specifications that prescribe how to represent and organise knowledge in a

consistent and interoperable way. Standards ensure that knowledge representations can be shared, reused, and understood by

different systems and applications, regardless of their implementation or environment. For example, the Dublin Core metadata

schema, which defines essential metadata elements for the web publishing task (e.g creator, publisher, abstract, etc.), has been

formally standardised as ISO 15836.335

Standard conceptualisations allow for standard data generation and transformation procedures. A central organisation pub-

lishes a comprehensive set of standard semantic artefacts, which can be updated based on community feedback, though any

12

https://doi.org/10.5194/wes-2023-173
Preprint. Discussion started: 3 January 2024
c© Author(s) 2024. CC BY 4.0 License.



revision process will inherently be slow-moving and filled with compromises. It can be expected that organisations will develop

and publish their own terminologies, schemas, or ontologies based on their specific needs and use cases.

The development of standards can be affected by whether a OWA or CWA paradigm is adopted by the standard designers.340

An OWA standard semantic framework allows for modularity between different conceptualisations, where an ecosystem of

different semantic artefacts can develop (Villegas et al., 2014; Chah, 2018). This system allows anybody to define or iterate

on an ontology or its sub-elements. This OWA framework is particularly useful for developing big-data insights (Rogushina

and Gladun, 2020). As an example, turbine Supervisory Control and Data Acquisition (SCADA) data is complex, involving

hundreds of thousands of data variables, where the same metadata vocabulary can have different meanings between turbine345

models. The naming scheme for most of these terms is defined in IEC 61400-25 standard. However, this standard does not

include a machine-readable formalisation as part of its specifications, which would be needed for the digitalisation process (see

Section 6). SCADA ontology conforming to an OWA standard semantic framework would allow for standard data transforma-

tion procedures while maintaining model-specific semantic heterogeneity. Examples of data transformations standards include

fault codes, power curve measurement, and damage estimation.350

4 Knowledge representation: technologies

In this section, we discuss the practical aspects of knowledge representation. We will explore various technologies that have

been developed to implement the theoretical concepts of knowledge representation we’ve discussed so far. This includes Se-

mantic Web’s vision for web of data and how it interrelates with FAIR principles, Resource Description Framework as way to

to express graph-based data model, and the use of ontology and schema languages for expressing knowledge structures.355

4.1 Semantic Web

The Semantic Web6 is an ambitious extension of the world wide web proposed by the World Wide Web Consortium (W3C)

that seeks to create a "web of data" to make data more machine-readable and interoperable. The core idea of the Semantic

Web is made possible through technologies discussed further below, such as the Resource Description Framework (RDF) and

the Web Ontology Language (OWL), which allow data to be annotated and related in a machine-understandable way. At the360

same time conceptualisations and abstractions form the foundation of the Semantic web technology stack (Figure 3). The

web of data vision carries a wealth of practical advantages such as creating knowledge bases (Noy et al., 2019) or providing

necessary technological foundation in the development of decision support systems (Tsalapati et al., 2018; Pease et al., 2020).

This has shown early dividends across various industries. For instance, e-commerce industry provides a valuable precedent for

how the Semantic Web can deliver tangible benefits. Online retailers like Amazon and eBay use structured data to enrich prod-365

uct descriptions, enhancing product discoverability and improving customer experience. At the same time online advisement

companies like Google rely on structured metadata and microdata7 for Search Engine Optimisation (SEO) by including it in

6https://www.w3.org/standards/semanticweb/
7https://www.w3.org/TR/2021/NOTE-microdata-20210128/
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Figure 3. Semantic web stack (source: Nowack (2009) available under CC-BY)

their knowledge bases 8. This structured data also allows for better integration with suppliers and logistics providers, creating

a more seamless and efficient e-commerce ecosystem.

The web of data is poised to become transformative for the wind energy sector as well, helping to address key challenges370

around data use. Some of the significant benefits of the Semantic Web include:

– Intelligent data discovery: Semantic Web improves data discoverability by enabling search engines and applications to

understand the context, content, and relationships of data. This can speed up data-driven investigations, like root cause

analysis of turbine faults, by helping engineers quickly find relevant data and information.

– Data interoperability: The Semantic Web allows for seamless integration of different data formats and sources. This375

becomes particularly beneficial in the context of the wind energy industry where heterogeneous data - ranging from wind

speed measurements and power output statistics to maintenance records and weather forecasts - need to be integrated

and analysed for effective decision-making. By structuring and interlinking data on wind turbines, weather conditions,

maintenance activities, and grid demand, wind farm operators can create a rich, machine-readable data environment.

This can enable intelligent applications, like AI-based predictive maintenance systems and decision-support, enhanced380

operational efficiency, and ultimately, decreased levelised cost of energy. Additionally, increased data interoperability

8https://www.blog.google/products/search/introducing-knowledge-graph-things-not/, Cited on 10.09.2023
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facilitates data sharing and collaboration within the wind energy community. Development of shared ontologies for wind

energy data can improve data exchange between different stakeholders - from wind farm operators and maintenance

providers to equipment manufacturers and researchers. Such a collaborative approach could accelerate innovation and

efficiency gains across the industry.385

– Automation and AI readiness: The machine-readable nature of Semantic Web data lays the groundwork for automation

and AI applications. For the wind energy industry, this means the potential for advanced analytics, predictive mainte-

nance, and automated optimisation of wind farm operations with AI augmented systems such a digital twins.

– Data reusability: Semantic Web encourages the use of standardised schemas and ontologies, making data readily

reusable across different contexts and applications. In the wind energy industry, this can facilitate cross-project and390

cross-site analytics, increasing the confidence in the analysis results and enhancing the understanding of wind turbine

performance and reliability.

4.1.1 Interrelation with FAIR principles

A reader might notice a strong similarity between the benefits of the Semantic web and FAIR (Findable, Accessible, Interopera-

ble, Reusable) principles, proposed by Wilkinson et al. (2016). While the discussion of FAIR principles falls more into the data395

management domain, the Semantic Web’s vision, and specifically the concept of Linked Data (LD) (Heath and Bizer, 2011),

is intertwined with the ultimate goals of FAIR approach. According to W3C themselves, "Linked Data lies at the heart of what

Semantic Web is all about: large scale integration of, and reasoning on, data on the Web." At the same time, technologies that

enable LD also enable data FAIRness. In fact, the practical recommendations for increasing data FAIRness, such as publishing

structured metadata on the web, refer to Semantic Web Technologies and LD (Wu et al., 2021). For more discussion about how400

LD can enable FAIR data see Appendix B.

While there is a significant overlap between the LD and FAIR principles in terms of their instrumental values, the fulfilment

of one set of these principles does not generally imply the other. In fact, FAIR principles are descriptive in nature, and are

technology independent. Moreover, while LD focuses on interoperability aspect and data openness, FAIR data principles are

not restricted to open data. Additionally, FAIR principles introduce requirements of metadata persistence and adherence to405

community standards. To illustrate the difference in the two perspectives, we can consider how LD and FAIR data are evaluated.

A common way to evaluate LD is the "5 star linked data" specification9. This concept relies heavily on the use of RDF and

other Semantic Web technologies. On the other hand, a structured approach to assess the FAIRness of data was proposed by

Research Data Alliance FAIR Data Maturity Model Working Group (2020) with their Data Maturity Model. This model seeks

to create a standard understanding of FAIR principles across diverse stakeholder groups. However, it does not dictate the exact410

means of evaluation nor the specific technical solutions. Instead, it offers a degree of flexibility while assessing data FAIRness.

This is indicative of the model’s recognition of the diverse contexts in which data can exist and the different standards that may

apply in different fields or sectors.

9https://www.w3.org/community/webize/2014/01/17/what-is-5-star-linked-data/
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4.2 Resource Description Framework

In the context of knowledge engineering, the key technological foundation for ontological representation and information415

exchange is provided by the Resource Description Framework (RDF). RDF is a W3C standard for representing knowledge in

the form of a graph-based data model. It was initially designed as a metadata model for describing resources on the web. RDF

serves as one of the fundamental layers in the Semantic Web technology stack. In RDF, data is represented as triples, consisting

of subject-predicate-object expressions. The subject is a resource, typically identified by a Uniform Resource Identifier (URI),

representing the entity being described or related to another entity. The predicate represents a relationship between the subject420

and the object, typically identified by a URI as well. The object can be either another resource or a literal value. These triples

form a directed graph that can be queried and reasoned about using various technologies such as SPARQL, a query language

designed for RDF, and RDFS or OWL ontology languages (discussed further below in Section 4.3) built on top of RDF. An

example of RDF statement using TURTLE (See Appendix A2 for more information about serialisation formats) syntax:

@prefix ex: <http://example.com/resource/> .425

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

ex:Aventa_AV-7 rdf:type ex:WindTurbine .

Here, Aventa AV-7 (subject) is linked to the concept of a Wind Turbine (object), by a "type" (predicate) relationship. As

discussed before, an ontology can be visualised as a labelled graph. RDF triplets is a natural way to describe a graph with430

Subject as a starting node, predicate indicating a label of the edge and the object as a target node.

4.3 Ontology and schema languages

Any ontology or schema must be expressed using a language. A Schema (or Ontology) Language is a combination of syntax and

semantics (particular to each language) allowing the user to express the structure and content of data. A variety of languages

exist to do this. Such languages can be more or less "feature-complete", i.e. their ability to express complex relations and435

semantics vary.

Generally, Ontology Languages are more oriented (in terms of their features and abilities) toward OWA data representation

and relation, whilst Schema Languages are more oriented toward defining and validating CWA data structures. These two

schools of thought are converging as the languages themselves evolve. For example, JSONSchema (which emerged for valida-

tion of closed data coming through web APIs) is increasingly moving toward a full ontological language (Angele and Angele,440

2021), while Shapes Constraint Language (SHACL) provides closed world validation (in the manner of JSONSchema) on open

graphs described by RDF.
Sidenote:

The language doesn’t have to be a text-based language. For example, IDEF5 is a graphical language that can be used to express an ontology.

A variety of schema languages were reviewed for the purpose of describing CWA data by Clark (2022). The summary of some445

commonly adopted ontology/schema languages and other data representation technologies is presented in Table 1. A more

detailed description and the examples of simple statements made using these languages can be found in Appendix A1.
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Technology What is it Most common use case
RDFS Data modelling language, for defi-

nition of a basic ontology
Creation and publication of ontologies and knowledge bases

OWL An ontology language built on RDF
and RDFS

Creation and publication of ontologies, allowing definition of
more expressive relationships (e.g. transitivity, reflexivity).

SHACL A schema language for describing
RDF data

Validation of data in an RDF graph

JSON-LD A syntax for serialization of ontolo-
gies and linked data ("Lightweight
Linked Data Format")

Adding context to properties within JSON data in order to attach
semantic meaning from a linked ontology

JSONSchema A schema language for describing
JSON (or JSON-serialisable) data

Communicating requirements and validating data at boundaries
between applications/services (like APIs)/organisations

YamlSchema A schema language for description
of YAML data

Linting and validating text-based configuration files

XMLSchema A schema language Validating data at boundaries between applications/services (e.g.
APIs), typically for legacy systems

AvroSchema A schema language for use with the
AVRO serialization utility

Validating event data in high data-rate event-driven systems (e.g.
usually high-volumes of small events with low complexity in
data structure)

HDF5Schema A schema language for describing
HDF5 (or HDF5-serialisable) data

Validating data in saved HDF5 data files (frequently used for
scientific applications)

Protobuf A mechanism for serializing typed
and structured data

Validating event data in high data-rate event-driven systems (e.g.
usually high-volumes of small events with low complexity in
data structure)

Table 1. Overview of knowledge representation languages

5 Knowledge engineering: knowledge-based systems

Knowledge-based systems (KBS) are a class of intelligent systems that utilise knowledge engineering techniques to capture,

represent, store, and manipulate domain-specific knowledge to solve complex problems, support decision-making, and en-450

able advanced applications. This section explores how the next generation of AI systems, such as Cognitive Digital Twins

(CDT) (Zheng et al., 2021) or Autonomous-Management Digital Twins (Wagg et al., 2020) can combine recent developments

in machine learning (ML), uncertainty quantification (UQ), verification and validation (V&V), Bayesian approaches and Deci-

sion Support Systems (DSS) with classical rule-based KBS. These hybrid systems are enabled through knowledge integration
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and interoperability as we discuss in Section 5.2. Additionally we touch upon data management and data engineering aspects455

of creation of such systems in Section 5.3.

5.1 Digital twins

The digital twin (DT) conceptual model was initially introduced in the context of product life-cycle management by Grieves

(2002) and later adopted for a wide range of applications in various domains, including wind energy. The basis of DT model

are the concepts of "duality" and "strong similarity" between the physical world and its digital representation (Grieves, 2022).460

Practical manifestations of DT instances come in a variety of types, depending on the actual realisation of the digital object and

the extent to which the "strong similarity" is achieved. Recently, several attempts at classification of the DT types have been

made (van der Valk et al., 2021; Pronost et al., 2021; Uhlenkamp et al., 2022; Marykovskiy et al., 2023).

Sidenote:

In their joint position paper, the American Institute of Aeronautics and Astronautics and the Aerospace Industries Association proposed a general465

definition of a DT as a "virtual representation of a connected physical asset". Moreover, examples and added value of 17 different DT types are

proposed (AIAA and AIA, 2020).

As digital representation is at the core of the DT concept, knowledge representation and knowledge engineering methods can

be, and often are, employed in the development of DT instances. Such DTs, can also employ data science methods (Ding, 2019)

and DSS (Seyr and Muskulus, 2019) to offer advanced functionalities including integration of heterogeneous data sources,470

prediction of unmeasured and future quantities based on historical data, and capability to produce actionable insights from

updatable models.

In the wind energy domain, DTs can be implemented at various system levels (components, assemblies, wind turbines, wind

farms, and grid) and throughout the asset’s life cycle starting from the design phase and ending with the decommissioning. Data

integration, or ontologies on a higher level, provide the backbone for the functional capabilities. Heterogeneous interfaces of475

single systems can be connected with others, by describing the system with a knowledge graph. Thereby, the orchestration of the

interactions between subsystems and processes is enabled (Wagg et al., 2020). Semantic technology enables the verification of

existing metadata, knowledge inference, and the creation of new knowledge via rule-based reasoners, thus providing cognitive

capabilities for CDT-type systems (Zheng et al., 2021; Arista et al., 2023). Additionally, ontologies can be used to describe

model interfaces for simulations used in digital twins. In this case, the structure and variables of model inputs and outputs are480

described and can be utilised in the automated setup of a modular model (Wiens et al., 2021).

Knowledge engineering is crucial in developing digital twins as it integrates heterogeneous data, automates data management

and data science workflows, and facilitates connections with other digital twins or models in larger systems. For DTs which

include DSS, knowledge engineering provides the ability to perform complex queries, as well as reasoning and inference

capabilities. Overall, knowledge engineering methods enhance the functionality and effectiveness of digital twins.485
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5.2 Knowledge integration and interoperability

Knowledge integration and interoperability lies at the core of knowledge engineering. Ontology-based data integration (OBDI)

has emerged as a powerful solution to consolidate and interoperate heterogeneous data sources, utilising ontologies as shared

(or aligned), semantic schemas (De Giacomo et al., 2018). Through the use of ontologies, OBDI enables the harmonisation of

diverse data sources into a coherent, query-able whole, promoting knowledge discovery and inference across systems that may490

otherwise remain isolated. In the wind energy sector, OBDI could integrate disparate data sources such as weather forecasts,

energy production logs, and maintenance records, promoting a comprehensive, multi-perspective analysis of wind turbine

performance, reliability, and optimisation.

Ontology evaluation and alignment are crucial for interoperability and OBDI. Ontology evaluation ensures suitability and

quality of a given knowledge base. Methods for ontology evaluation may differ from one context to another. Vrandečić (2009)495

proposes assessing the quality of an ontology by evaluating such properties as accuracy, adaptability, clarity, completeness,

computational efficiency, conciseness, constituency, and organisational fitness. Ontology alignment identifies semantically

equivalent entities from different ontologies, enabling the harmonisation of heterogeneous data sources. In practice, this can be

implemented by connecting different concepts using OWL owl:sameAs or SKOS skos:exactMatch relations. This can

significantly benefit the wind energy industry by allowing disparate systems and databases to interact and exchange informa-500

tion seamlessly, promoting a more efficient and effective operational workflow. For example, different organisations perform

reliability and failure analysis of using their own taxonomies of wind turbine parts. Aligning these taxonomies between them-

selves not only allows a more comprehensive analysis, but also significantly increases the amount of available data, resulting

in higher confidence in analysis results.

Ontology reuse is another important aspect of knowledge integration. Reusing existing ontologies can reduce the effort and505

complexity involved in developing new ontologies from scratch and promote interoperability by using shared semantic arte-

facts. An important tool for ontology reuse are ontology hosting services. The hosting and sharing of ontologies requires the

use of platforms and repositories allowing the discovery, search, versioning, and interconnection of the semantic models. While

ontology hosting has been initially performed for specific communities and domains, there are several common functionali-

ties (search, identification, alignment, annotation, etc.) that are orthogonal to domain-specific aspects. An example of such510

application is the OntoPortal Alliance, a consortium constituted of multiple research institutions dedicated to the development

and maintenance of the OntoPortal platform (Graybeal et al., 2019), available as open-source code. Based on this common

platform, different instances of the portal are made available to specific communities, as for example BioPortal (Noy et al.,

2009), AgroPortal (Jonquet et al., 2018), EcoPortal (Kechagioglou et al., 2021), etc. Compared to other platforms and ini-

tiatives for ontology hosting, the OntoPortal platform provides not only the most comprehensive set of features, but also the515

widest adoption in different domains (Jonquet et al., 2023). We discuss possibility of ontology reuse in wind energy domain in

Section 6.
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5.3 Data storage and management for knowledge-based systems

The topic of data storage and management for KBS is where knowledge engineering overlaps heavily with the data management

and data engineering domains. In terms of data management, the relational model based on FOL (Codd, 1990), usually in520

the form of SQL databases, has been widely adopted since the early 1990s across all industries as a solution for creating

and managing structured data. In recent years, non-relational systems such as Not Only SQL (NoSQL) databases have gained

popularity, as they provide for more flexible database expansion, allow for multiple data structures, and offer better performance

(in terms of computing) when scaling up to deal with large data sets (Lourenço et al., 2015). In the context of knowledge

engineering, triple stores (such as Ontotext10) and graph databases (such as Neo4j11) are well suited to provide a technological525

foundation for the development of Semantic Web applications (Soussi and Bahaj, 2019). However, before selecting a database

for storing and managing ontology-based data, several consideration should be taken into account, as described in this section.

Relational and SQL databases excel at organising data in a structured, tabular format. They are particularly powerful when

dealing with large amounts of structured data that needs to be queried with complex logic, given their ability to perform

reliable and robust transactions (Haerder and Reuter, 1983). SQL databases can be very efficient for look-ups and queries that530

involve tabular type data. Nevertheless, fitting ontology-based data, which are more graph-like in nature, into the format of an

SQL database can pose significant challenges. As discussed before, the fundamental data model for ontology is graph-based,

whereas a tabular data structure is typically relational. These two differing structures often do not align seamlessly, leading

to issues in data management. The term impedance-mismatch is used to denote the issues that surface when a system tries to

transform one type of data structure into another. Specifically, when data is mapped from a graph-like or an object-oriented535

model to a relational model, a mismatch arises due to the structural differences between these representations. Over time, a

variety of strategies, often referred to as ’object-relational mapping’ methods, have been developed to address this mismatch.

These methods focus on transitioning data from object-oriented models (based on classes and objects) into a format suitable

for storage in relational databases (based on tables and relations).

Regardless of these developments, the fundamental divide in modelling approaches remains. Ontology-based modelling540

focuses on concepts or objects and describing the relationships between these concepts. While SQL databases have introduced

some object-oriented features, they haven’t yet introduced rich modelling semantics that are seen in ontological approaches.

Hence, in cases when data has complex relationships or when the relationships themselves are inherently valuable, NoSQL

graph databases offer more efficiency in terms of query speeds.

Object stores and NoSQL databases were developed as solutions to certain limitations that traditional SQL databases had,545

particularly in two aspects: handling larger amounts of data and dealing with a variety of data types. To understand the first

aspect, it is important to understand the notion of "scaling". In simple terms, "scaling" refers to the increasing capacity to

handle more data or requests. There are two main ways of doing this: "scaling up" (also known as vertical scaling) and "scaling

out" (also known as horizontal scaling). Scaling up refers to improving the capacity of a single server, such as by adding more

memory or a faster processor. However, there are physical limitations to the extent by which a single server can be upgraded.550

10https://www.ontotext.com
11https://neo4j.com/
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On the other hand, scaling out involves adding more servers to a system and distributing the data and workload among them.

This can provide greater increases in capacity, and allows for more flexibility and resilience because if one server fails, others

can take over its workload. The second aspect, data variety, refers to the shift from storing data in tables (as SQL databases do)

to storing data in more flexible formats, such as documents, which NoSQL databases are designed to handle. In recent years,

there has been progress in improving the ability of relational databases (like Aurora 12) to scale out, which is traditionally a555

strength of NoSQL databases. However, in some high-scale environments, where a large amount of data needs to be managed,

object stores and NoSQL databases are still often required because they offer a purer form of horizontal scaling.

Triple-stores and graph databases provide a natural fit for storing and managing ontology-based data like RDF and OWL.

While SQL database tables can encode RDF triples, and the expressive power of FOL enables specification of almost any

conceptualisation, the semantics of the SQL as a means of performing graph queries is often limited as compared with a560

dedicated / purpose-built graph database or triple store. Additionally as mentioned above NoSQL databases greatly benefit from

scaling out approaches. Triple-stores are databases designed specifically for storing RDF triples (an example of RDF triplet

shown before in Section 4.2). They typically support SPARQL, a query language for RDF, allowing for efficient querying and

manipulation of the stored RDF data. Triple-stores provide the physical technological support for the practical implementation

of Semantic Web applications and services (like the ones discussed in in Section 4.1), providing efficient storage and retrieval of565

RDF data. Graph databases, on the other hand, are more general-purpose databases that use graph structures to store data. Each

entity (or node) and relationship in the database can have an arbitrary number of attributes, allowing for rich and complex data

models. Some graph databases support RDF and SPARQL, making them suitable for Semantic Web applications, while others

use proprietary query languages. Compared to triple stores, graph databases may provide more flexibility and performance

optimisations for certain types of queries and data models.570

5.3.1 Database selection and integration.

When selecting a database for storing and managing ontology-based data, it is more important to consider not only the storage

of data (whether a SQL database can or cannot store JSON data), but as or more importantly, the semantics of the data (how

the data is typed and queried). Almost any database can store RDF data or document (there is usually a mapping of some kind).

The more important question is whether the query and type language give themselves to this mapping. If the mapping is forced,575

one may be able to store data, but it may be very difficult to query or to enforce constraints. For example, one may be able

to store data as JSON in a SQL column, but can one impose constraints over the structure of the data in the JSON column -

and can one more easily query the data using SQL language or using a graph-based query language? Questions one may wish

to consider when adopting a database are: first, does the type system enable you to model data of your domain and enforce

constraints; and second, does the query language fit the shape of your domain and are the queries easy to write and understand,580

once written? Quite often, it is possible to store data using a poorly fitted databases; but cracks emerge in data that is poorly

constrained and queries that are hard to read or understand.

12https://aws.amazon.com/rds/aurora/, Cited on 10.09.2023
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6 Knowledge engineering: wind energy domain review

In this section, we review and evaluate existing knowledge engineering related efforts and initiatives in the wind energy sector.

This work was centred on the following four questions, which are discussed in more detail in the next sections: (1) Who are the585

data users and producers in the wind energy domain? (2) Which semantic artefacts relevant to these data users and producers

in the wind energy domain already exist? (3) What are the gaps and overlaps in existing semantic artefacts and to what extent

existing artefacts gained domain or industry adoption? (4) What types of digital twins and decision support systems have been

developed so far in wind energy domain and how these systems can be improved by applying knowledge engineering methods?

6.1 (1) Who are the data users and producers in the wind energy domain?590

6.1.1 Scope of the domain

This part began with establishing the scope of the wind energy domain. While we expected that the semantic artefacts we

would find would focus on the fields of engineering and atmospheric science, we wanted to be aware of user communities

and stakeholders outside these fields, who might use data to inform their decisions. Consequently, we were purposeful towards

being inclusive of all the roles and touch-points with the domain. An understanding with taking this approach is that there595

would be semantic artefacts and data models from other domains that could interact with ones specific to wind energy. It

was important to us that we consider the multidisciplinary nature of activities undertaken by various stakeholders and their

interactions. Recognising these relationships could influence how ontologies are designed in areas where gaps or overlaps exist.

Moreover, these aspects shape ontology reuse and alignment activities. In the absence of universally accepted classifications

for the roles and activities within wind energy domain, we bounded our scope to specific stages in the life cycle of wind energy600

assets. In particular, we have adopted the same stages as the ones used by Barber et al. (2023c) in their analysis of various

stakeholder "pain points" related to the digitalisation process in wind energy:

A. Wind turbine design

B. Wind farm planning

C. Wind farm operation605

D. Project selling / buying

E. End of life

F. General

This classification is sufficiently top-level to include activities with a narrower scope such as wind resource assessment or

wind turbine maintenance. Roles and activities related to wind turbine design and wind farm planning were selected as the610

initial bound to the domain of inquiry, as these provided a definite point in time in which data is present in the life cycle. To

close our scope, we selected roles related to the end of life stage. When looking at other power alternatives such as hydro,

nuclear, and fossil, the decommissioning stage creates new data such as the impact on the industry and environment. The same

should be expected for wind energy as turbines age and build materials and designs are enhanced, climate change impacts the

atmospheric conditions at existing sites, and other energy generation technologies come to market.615
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It is important to note that some of the roles and activities present in resulting search space are not entirely wind energy specific,

such as environmental reviews and power consumption analysis. The search for semantic artefacts related to such roles and

activities was not as extensive.

6.1.2 Type of data users

For defining the data users and consumers in our scope of the wind energy domain, we supplemented our own domain expertise620

with information from Hamilton and Liming (United States Bureau of Labor Statistics) that described careers in wind energy

and sources describing stakeholder analysis in real and theoretical wind energy scenarios (Bremere and Indriksone, 2017;

de Vivero, 2023). These scenarios were of applications of onshore and offshore wind energy in Europe. A search in the Scopus

database for the query (“wind energy” AND “stakeholder analysis”) provided only seven results, which focused mostly on

socioeconomic effects (Vicuña and Pérez, 2020; Vicuña and Pérez, 2020; Huesca-Pérez et al., 2016), decision making in625

a regulated industry (Rosenberg, 2019), synergy with agriculture sector (Markovska et al., 2013), marine biodiversity and

aquaculture implications (Wever et al., 2015; Aschenbrenner and Winder, 2019; Weber and Köppel, 2022). There were no

results with a focus on wind turbine design, wind farm planning and operation, project selling, or end of life of wind energy

assets.

The report by the United States Bureau of Labor Statistics mentioned in the previous paragraph included jobs that can be630

mostly attributed to the OEMs, wind power project developers, and energy producers (see Table 2). A more inclusive (but

not exhaustive) classification provided by a stakeholder analysis for wind energy project assessment and planning phases in a

European context (Bremere and Indriksone, 2017) included the following:

1. Public authorities.

2. Energy producers.635

3. Investors.

4. Experts (consultants).

5. Environmental NGOs.

6. Professional associations.

7. Citizen/societal groups640

8. Land owners.

9. Wind turbine producers (OEMs).

10. Wind power project developers.

11. Electricity grid owners.

12. Universities (academia).645

The majority of these stakeholders continue to interact with wind energy domain data well through the later stages of wind

energy asset’s life cycle, up until the end of life.
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Life-cycle phase Occupation Job titles

Manufacturing Phase Engineering

Aerospace engineers, Civil engineers,Electrical engineers, Electronics
engineers, Environmental engineers, Health and safety engineers, In-
dustrial engineers, Materials engineers, Mechanical engineers, Engi-
neering technicians, Drafters

General Manufacturing Machinists, Computer-controlled machine tool operators, Assemblers,
Welders, Quality-control inspector, Industrial production managers

Project Development Management and Legal
Project Managers, Asset managers,Land acquisition specialists, Logis-
ticians

Scientists
Atmospheric scientists, Wildlife biologists, Geologists, Environmental
scientists

Construction Occupation Construction equipment operators, Crane operators, Electricians
Operation and Maintenance
Phase General Operation Plant supervisors, Service technicians

Table 2. Wind energy sector jobs per life cycle phase according to United States Bureau of Labor Statistics

6.2 (2) Which semantic artefacts relevant to these data users and producers in the wind energy domain already exist?

To build a collection of semantic artefacts to review and analyse, we solicited the IEA Wind Task 43 Working Group 1

participants, a group comprised of industry, academic, and government collaborators with interests and experience in wind650

energy metadata13. A search of the SCOPUS database using the query ((taxonomy OR schema OR ontology OR "knowledge

base") AND (“wind energy” OR "wind turbine" OR "wind plant" OR "wind power plant")) provided 202 results from scholarly

literature. Chosen results from this query were selected based on having a primary focus of describing the development of a

semantic artefact or presented a clear application of a semantic artefact in an applied setting. A search using the same query

in the web search engines presented trade literature, technical reports from government agencies, and wind energy domain655

semantic artefacts of various expressiveness and generality. The processed results of these searches are presented hereafter.

Brief summaries of wind energy domain specific artefacts are presented in Table 3 and Table 4. Meanwhile, cross-domain and

wind energy related semantic artefacts that appeared in search queries are briefly summarised in Table 5.

6.2.1 Review methodology

To perform a methodological overview of the relevant semantic artefacts, we have evaluated them with the following crite-660

ria: (1) Context and purpose for the semantic artefact development; (2) Target audience / Role; (3) Associated activity; (4)

Associated life cycle stage of the wind energy assets; (5) Semantic artefact type; (6) Alignment with other semantic artefacts

(7) Technologies used. Additionally, we have assessed semantic artefacts according to semantic expressiveness, generality and

granularity.Next, we prepared a matrix that mapped roles and activities we identified within our scope of the wind energy

domain with the conceptualisations that were found. Identifying the intersections between role and ontology was based on665

qualitatively analysing the purpose and applicability of the ontology as described by the resource or by analysis of the terms in

the ontology and the list of roles. A role that did not have an identified semantic artefact would indicate a potential gap. On the

other hand a roles with several distinct ontologies serving a similar purpose would indicate a lack of community adoption and

13https://www.ieawindtask43.org/wg1
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dialogue. These cases required a further investigation into the possible causes of this lack in sustainable development. To add

context to these inquiries, we have classified all semantic artefacts according to the following criteria: (1) Level of adoption;670

(2) Stakeholder type (Academia / Industry / Government / Standardisation Body); (3) Availability of the semantic artefact for

download in some kind serialisation or as Linked Data (4) Continued development and maintenance.

6.2.2 Limitations in the analysis

Results from our academic literature and internet searches do not include proprietary semantic artefacts. This may constrain the

conclusions of the analysis of gaps and overlaps in these conceptualisations because we are unsure of the extent that industry675

has identified these and developed solutions. We are also unaware of the impact of these gaps and overlaps to their data needs

and operations. An exhaustive search for semantic artefacts that included multiple energy sources in addition to wind was

not performed. The assumption was that upper-level conceptualisations would not have the specificity of terms or architecture

demanded by the roles in our scope of wind energy.

6.2.3 Wind energy specific semantic artefacts680

This group of semantic artefacts obtained from SCOPUS and web search engine queries are fully wind energy domain specific

as defined per scope outlined above. The IRPWIND (Sempreviva et al., 2017) initiative was intended as means to provide

additional rich metadata to wind energy data sets in the context of web publishing. This was envisioned as an extension to the

Dublin Core metadata model to allow for additional controlled vocabularies of terms that can be used to contextualise data

sets and used for data search and retrieval purposes. For example, these terms could be used as filter tags when searching for685

data set in a catalogue. The IEA Wind Data Models were developed as part of different IEA Wind Tasks. The LiDAR ontology

developed as a part of Task 32 had as a goal to facilitate analysis and exchange of data produced during measurements with

various LiDAR Systems. IRPWIND and Task 32 are the only initiatives that published their semantic artefacts as Linked

Data. The WindIO ontology was developed by Bortolotti et al. (2022) within the Task 37 group for definition of the inputs

and outputs for systems engineering multidisciplinary design optimisation (MDAO) of wind turbine and plants. This resulting690

ontology is formalised as a YAML schema and is used to describe the structure of YAML input files for Wind-plant Integrated

System Design and Engineering Model (WISDEM) software. Recently, WindIO ontology was also suggested by IEA Wind

Task 55 work-group as a basis for a more general use ontology describing technical specifications and characteristics of wind

turbines and power plants. This ontology will be used to define reference wind turbines and plants for the purposes of V&V,

benchmark testing, and impact assessment of novel technologies on wind plants. The WRA Data Model developed in Task695

43 standardises how properties of a wind resource measurement station (e.g. latitude, longitude, anemometer serial number,

installation height, logger slope, logger offset, etc.) are structured and serialised as a JSON file. This data model is described

with JSON schema. The majority of semantic artefacts presented in academic literature are not available for download. Among

these are various taxonomies of wind turbine components for reliability analysis such as WT Components Taxonomy (Artigao

et al., 2018). These taxonomies are often not formalised in any modelling language. In a similar context of reliability and700

failure analysis, more expressive ontologies were proposed by various authors. In particular,the ontology for Failure Mode,
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Effects and Criticality Analysis (FMECA) proposed by Zhou et al. (2015) and the one for condition monitoring proposed by

Papadopoulos and Cipcigan (2009). These ontologies relied on OWL for knowledge representation. More general, domain

level ontologies and knowledge bases such as WPP Ontology (Zhu et al., 2008), OWO Nguyen et al. (2014), attempted to

comprehensively capture wind energy related concepts. These authors of these knowledge bases also opted for Semantic705

Web technology stack, with a notable exception of WESGraph, which relied on Neo4j graph database for data storage and

querying. As a consequence, the underlying top level ontology for WESGraph is not formalised with any of the commonly used

ontology languages. Lastly, some attempts were undertaken by the industry at creating controlled vocabularies of terms used

for wind turbine system SCADA and reporting data. ENTR Alliance and SCADA International created controlled vocabularies

of SCADA terms in accordance to the guidelines presented in IEC 61400-25. In North America, wind turbine generation710

data reporting for Generating Availability Data System (GADS) follows the schema enforced by North American Electric

Reliability Corporation (NERC). The conceptualisations for these three semantic artefacts are specified as lists of terms, stored

along with term descriptions in a tabular form which is serialised using CSV or XLS formats.

6.2.4 Cross-domain and wind energy activities related domains.

This group of semantic artefacts, which is not entirely contained within the scope of domain of interest, appeared among the715

results of the SCOPUS and web search engine queries due to their cross-domain nature and applications in wind energy (and as

result would match to keywords like "wind turbine" or "wind energy"). These semantic artefacts can be attributed to the domains

that overlap with wind energy such as environment and meteorology, sensing, structural health monitoring, material sciences,

energy etc. As mentioned before, no targeted search and review was performed for each of the overlapping domains, hence the

presented list is not exhaustive. For example, Semantic LAminated Composites Knowledge management System (SLACKS)720

was developed specifically for the wind turbine blades design use case. However, besides this specific case, a multitude of

material ontologies and knowledge bases exist (De Baas et al., 2023). Table 5 presents a summary of the semantic artefacts

reviewed for this work. Most these have been adopted by various communities and are instrumental for inter-disciplinary

collaborations. The table does not include semantic artefacts that have not seen the wide-spread adoption, either due to their

"in-development" status or when superseded by more recent efforts. For example, a Structural Health Monitoring (SHM)725

Ontology was recently proposed by Tsialiamanis et al. (2021) to facilitate knowledge sharing, application, and reusability

for SHM projects. However, it has not been yet validated and published. At the same time some renewable energy domain

ontologies such as OpenWatt (Lamanna and Maccioni, 2014) are no longer supported as the knowledge has been subsumed by

knowledge bases such as Open Energy Ontology (OEO) (Booshehri et al., 2021).

For the sake of completeness, several upper and mid level ontologies have been reviewed, such Basic Formal Ontology (BFO)730

and Common Core Ontologies (CCO) as many domain specific semantic artefacts developed by communities outside of wind

energy tend to align with some upper level ontology. It should be noted that there are many upper level ontologies that have been

developed by various authors with different focus. For example, Dublin Core was developed in context of metadata standards

and description of web resources, such as publications, data sets, images etc. Another example is Schema.org: a commonly

adopted ontology for describing resources on the web, initially developed for e-commerce scope by a consortium of Google,735
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Table 3. Description of wind energy domain-specific semantic artefacts

Brief Description

IR
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.,

20
17

) ASPECT Controlled vocabulary of variables, parameters and constants used in wind energy community.

EXTRACT Classification of external conditions in which a wind farm operates

IDEM Classification of models used in wind energy

NEAT Taxonomical organization of research topics in wind energy which follows a typical lifecycle of wind farm develop-
ment

WEAR Classification of wind turbine materials

WEAVE Classification of activities in which data are produced

IE
A

W
in

d
D

at
a

M
od

el
s Task 32:

Wind LiDAR ontology Ontological representation of wind LiDAR supporting development of modular tools and processes for wind LiDARs

Task 37:
WindIO Wind Turbine and Wind Power Plant schemas defining input and output variables for systems engineering MDAO.

Task 43:
WRA Data Model A JSON schema to describe and verify wind resource assement data.

Pu
bl

is
he

d
as

A
ca

de
m

ic
A

rt
ic

le

WPP Ontology Ontology built on the basis of wind power plant information model with OWL by Zhu et al. (2008).

Offshore Wind
Ontology (OWO) Offshore wind domain ontology model based on the IEC 61400-25 standard by Nguyen et al. (2014).

Intelligent Fault
Diagnosis of
Wind Turbines

Wind Turbine fault diagnosis application ontology based on Failure Mode, Effects and Criticality Analysis (FMECA)
and a knowledge base by Zhou et al. (2015).

WT Components
Taxonomy

A unified taxonomy by Artigao et al. (2018) of wind turbine components (including Reliawind and Reder et al.
(2016)) for the purpose of reliability analysis.

Condition Monitoring
of Wind Turbines

Wind Turbine condition monitoring application ontology and a knowledge base by Papadopoulos and Cipcigan
(2009).

WT Operational
States An ontology and a knowledge base of wind turbine operational states by Bunte et al. (2018)

WPP Spatial
Database Conceptual schema for a SQL Database by Lungu et al. (2012)

WPP Expert
System Expert system for wind power plant’s equipment diagnosis by Duer et al. (2017)

Onshore WT
Maintenance Wind turbine maintenance task ontology for onshore wind turbines by Strack et al. (2021).

OntoWind Wind Energy domain ontology and a knowledge base by Küçük and Küçük (2018).

WESgraph Top-Level ontology and a knowledge base for the wind farm domain, implemented as a graph database by Quaeghe-
beur et al. (2020).

In
du

st
ry

D
ev

el
op

ed

Reliawind Taxonomy Taxonomy of wind turbine components for the purpose of reliability and FMECA analysis

Power Curve
Schema A JSON schema to describe and verify WT power curve data serialised as JSON (Clark, 2023).

ENTR Alliance
OpenOA

Controlled vocabulary for SCADA data and a schema based on IEC61400-25 standard describing renewable energy
variables.

Global Wind Data
Tag-List

A comprehensive controlled vocabulary of data tags used in wind energy SCADA systems, based on the IEC 61400-
25 standard. Maintianed by SCADA International and published as a spreadsheet.

GADS WT
Reporting

CSV file schema for Generating Availability Data System (GADS) wind turbine generation data reporting used by
North American Electric Reliability Corporation
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Name Life Cycle stage Context /Purpose

IRPWIND General

Data management:
FAIR practices for data;

Publishing data sets on the Web;
Data search and retrieval;

IEA Task 32:
Wind LiDAR
Ontology

Wind farm planning
Siting:

LiDAR Data processing;

IEA Task 37:
WindIO Wind turbine design

Economics:
LCOE optimisation;

WISDEM inputs definition;

IEA Task 43:
WRA Data Model Wind farm planning

Siting:
Wind resource assessment (WRA);

WRA data sharing, processing,
and interoperability;

WPP Ontology Wing farm operation
Operations and Maintenance:

WPP information systems development;

Offshore Wind
Ontology (OWO) Wing farm operation

Operations and Maintenance:
WPP Management;

Data integration and knowledge sharing;

Diagnosis of
Wind Turbines Wind farm operation

Operations and Maintenance:
FMECA Analysis; DSS;

WT Components
Taxonomy,
Reliawind Taxonomy

Wind farm operation
Operations and Maintenance:

Reliability Analysis;
Failure localisation on component basis;

Condition Monitoring
of Wind Turbines Wind farm operation

Operations and Maintenance:
Condition Monitoring; DSS;

WT Operational
States Wind farm operation

Operations and Maintenance:
WPP operation and control;

WPP Spatial
Database Wind farm planning

Siting:
WRA; Spatial planning;

Querying GIS Database; DSS;

WPP Expert
System Wind farm operation

Operations and Maintenance:
WPP operation and control;
Expert system development;

Onshore WT
Maintenance Wind farm operation

Operations and Maintenance:
Condition-oriented maintenance;

Maintenance reports digitisation and
SCADA information integration;

OntoWind General
Knowledge management:

Wind Energy KB Development

WESgraph General
Knowledge management:

Wind Energy KB Development

Power Curve
Schema General

Data management:
Automating workflows;

Application development;

ENTR Alliance
OpenOA Wind farm operation

Operations and Maintenance:
WT Supervision and Control;

Condition monitoring and operational analysis;
SCADA information management;

Global Wind Data
Tag-List Wind farm operation

Operations and Maintenance:
SCADA information management;

GADS WT
Reporting Wind farm operation

Operations and Maintenance:
Energy generation availability data reporting;

Table 4. Wind energy domain semantic artefacts and stakeholder use cases
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Table 5. Description of cross-domain and wind energy overlapping domains semantic artefacts

Brief Description

U
pp

er
an

d
M

id
L

ev
el

BFO

Basic Formal Ontology (BFO) is a top-level ontology that provides a foundational framework for organizing
and structuring domain-specific ontologies. It aims to promote interoperability and integration across different
domain ontologies by providing a common set of basic categories and relationships.

CCO

Common Core Ontologies (CCO) is a collection of 12 ontologies that comprise mid-level extension of BFO. The
CCO provide semantics for concepts and relations that are used in most domains of interest, such as concepts
from Units of Measure Ontology, Event Ontology, Time Ontology. Many domain ontologies are aligned with
CCO. Among them are Aircraft Ontology, Occupation Ontology, Sensor Ontology, etc.

Dublin Core

Dublin Core is a simple, flexible, and extensible metadata standard for describing a wide range of resources,
including digital and physical assets. It consists of a set of 15 core elements (e.g., Title, Creator, Subject, etc.)
that can be used to describe resources in a consistent and structured manner, facilitating resource discovery and
interoperability.

Schema.org A shared vocabulary for structured data markup on web pages to improve search engine results and discoverabil-
ity.

W
3C

SKOS A W3C data model recommendation for expressing controlled vocabularies, taxonomies, and thesauri.

PROV-O The PROV Ontology (PROV-O) is an ontology that provides a vocabulary for expressing provenance information.

SSN-XG

Semantic Sensor Network (SSN-XG) ontology describes sensors, actuators and observations, and related con-
cepts. Domain concepts, such as time, locations, are intended to be included from other ontologies via OWL
imports.

W
3C

E
xa

m
pl

e
O

nt
ol

og
ie

s

AWS
Agriculture Meteorology example, Ontology for Meteorological Sensors showcasing the ontology developed by
the W3C Semantic Sensor Networks incubator group (SSN-XG).

CF Climate and Forecast (CF) metadata conventions vocabulary encoded with OWL

WEATHER
Linked Sensor Data - Weather station is an example ontology for weather data publication on the LOD using
SOSA/SSN ontology

WM30 An example of the SSN-XG sensor ontology used to describe a specific sensing device, the Vaisala WM30, which
measures wind speed and wind direction.

O
bs

er
va

tio
ns

an
d

M
ea

su
re

m
en

ts

SciDATA
SciData is a data model for scientific data that provides an ontologically defined framework for organizing and
linking (with JSON-LD) both the data and metadata from scientific experiments, calculations, and theories.

OBOE

The Extensible Observation Ontology (OBOE) is a formal ontology for capturing the semantics of scientific
observation and measurement. The ontology supports researchers in adding detailed semantic annotations to
scientific data, thereby clarifying the inherent meaning of scientific observations.

I-ADOPT
An ontology designed to facilitate interoperability between existing variable description models (including on-
tologies, taxonomy, and structured controlled vocabularies).

OM
Ontology of units of Measure (OM) is an ontology focused on units, quantities, measurements, and dimensions
relevant to scientific research

D
om

ai
n

L
ev

el

SWEET

Semantic Web for Earth and Environmental Terminology (SWEET) is a foundational ontology that contains over
6000 concepts organized in 200 ontologies expressed in OWL. SWEET is a highly modular, general-purpose
ontology suite designed to represent Earth and environmental science concepts and their relationships.

CF Metadata -
Conventions

Climate and Forecast (CF) standardized set of metadata elements for describing climate and forecast data stored
in netCDF files. The conventions aim to facilitate data sharing, discovery, and interoperability in the climate and
forecasting communities.

SLAKS
Semantic LAminated Composites Knowledge management System (SLACKS) Premkumar et al. (2014) based
on suite of ontologies for laminated composites materials and design for manufacturing (DFM)

E
ne

rg
y

D
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n

OEO Open Energy Ontology (OEO) (Booshehri et al., 2021) is an energy system modelling domain ontology.

EKG
Energy Knowledge Graph (EKG) (Chun et al., 2018) is an upper level ontology for the integration of knowledge
resources in energy systems

EDF PPO Electricity of France (EDF) Power Plant Ontology and knowledge base (Dourgnon-Hanoune et al., 2010).

GCIEO
Global City Indicator Energy Ontologies (GCIEO) (Komisar and Fox, 2020) is a standard ontology for Semantic
Web based representations of general knowledge for the Energy Theme indicators (ISO 37120 ).
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Microsoft, Yahoo and Yandex. A comprehensive overview and evaluation of upper level ontologies was performed by Partridge

et al. (2020). Ontologies and data model recommendations developed by W3C such as Simple Knowledge Organisation System

(SKOS), PROV-O and Semantic Sensor Network (SSN-XG) have gained widespread adoption due to pioneering work of

W3C on "web of data" and its role in Semantic Web technology stack development. SKOS provides a system for creation of

taxonomies, controlled vocabularies and thesauri creation within this technology stack, following the principles of Linked Data.740

In wind energy context, IRPWIND initiative used SKOS in creation of their taxonomies. The PROV Ontology (PROV-O) is

an ontology that provides a vocabulary for expressing provenance information, which can be important in wind energy context

for data governance purposes given the multiplicity of stakeholders and complexity of the systems producing the data. Several

examples of Semantic Sensor Network (SSN-XG) ontology have been developed specifically for meteorological sensors, which

clearly overlaps with types of data generated in the context wind energy activities. More generally, data generated during745

observation and measurement activities can be formalised with data models like SciDATA and described with ontologies

like Extensible Observation Ontology (OBOE), Ontolgy of Measurement Units (OM) and I-ADOPT. In addition, semantic

artefacts such Semantic Web for Earth and Environmental Terminology (SWEET) and Climate and Forecast (CF) Metadata

conventions from weather and environmental domains share significant terminological overlap for describing observations and

measurements related to siting activities. Several energy domain ontologies and knowledge bases like Open Energy Ontology750

(OEO), Energy Knowledge Graph (EKG), Global City Indicator Energy Ontologies (GCIEO), and Electricity of France (EDF)

Power Plant Ontology include some wind energy concepts. As a result, these semantic artefacts appeared among the searches

performed for this review.

6.3 (3) What are the gaps and overlaps in existing semantic artefacts and to what extent existing artefacts gained

domain or industry adoption?755

The results of the search queries and their subsequent analysis has revealed the following:

– The majority of existing semantic artefacts pertain to the wind farm operation life cycle stage, and especially to the

activities related to failure and reliability analysis of wind turbines.

– There appears to be no semantic artefacts developed specifically with the context of project selling / buying or end of

life stages.760

– Existing semantic artefacts have not gained high adoption by domain experts and there is no common domain-level

ontology that is accepted by the community.

– There is no alignment to upper level ontologies or between semantic artefacts within the wind energy domain. Similarly,

there no alignment or re-use of semantic artefacts from domains overlapping with wind energy in their data generation

and producing activities.765

– There is significant corpus of taxonomies and vocabularies that has not been formalised with any modeling language.

Many activities still rely on manual data processing.

30

https://doi.org/10.5194/wes-2023-173
Preprint. Discussion started: 3 January 2024
c© Author(s) 2024. CC BY 4.0 License.



Medium Adoption

Wind Energy Domain (20)

Low or Unknown Adoption

Industry

Academia

Linked Data

Downloadable

Not Available

Maintained

Not Maintained or Unknown

High Adoption

Cross-Domain or Related Domain (22)

Medium Adoption

Low or Unknown Adoption

Academia

Collaboration

Standardization Body / NGO

Linked Data

Not Available

Downloadable

Maintained

Not Maintained

Unknown

Figure 4. Analysis of semantic artefacts adoption levels. Low adoption levels in wind energy domain can be attributed to low availability
and lack of active development.

These conclusions can be illustrated with the example of taxonomies developed for the purpose of failure analysis. Artigao

et al. (2018) manually unified and aligned 13 different wind turbine component taxonomies (none of which was made avail-

able using some kind of standard formalisation). Following this trend, one of the more recent wind turbine failure analysis770

performed by Sanchez-Fernandez et al. (2023) once agian manually mapped failure and maintenance records to a new WT

taxonomy based on the Standard Reference Designation System for Power Plant (SRD-PP). This lack of alignment and reuse

is also highlighted by Leahy et al. (2019) suggesting that the absence of unified standards for turbine taxonomies, alarm codes,

SCADA operational data and maintenance and fault reporting significantly hinders the wind turbine condition monitoring and

reliability analyses. Such a situation can be partially attributed to the fact that the existing conceptual models in wind energy775

and related domains are not maintained and are not published following the LD principles, as can be observed from the Sankey

diagram in Figure 4.

Out of 19 reviewed existing wind energy domain semantic artefacts, six were downloadable in some kind of serialisation, and

three were not even available. Such a situation results in low adoption and lack of further development in a negative feedback

cycle. This issue is not unique solely to the wind energy domain, but also for many technological sciences. Meanwhile, this is780

generally not the case for cross-domain and top-level semantic artefacts. Such artefacts are widely used by few communities

spearheading open science principles adoption such as BioMed community. Hence, there is a strong need for a holistic ap-

proach: a framework for community development and maintenance of semantic artefacts, in addition to a platform for semantic

artefact hosting and usage, which is discussed more in Section 7.
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DSS (70) DSS (70)

DT (111) Supervisory (26)

Simulation-Prediction (60)

Operational (22)

Intelligent Learning (2)
Autonous Management (1)

No semantic artefacts (146)

Semantic artefacts (35)

Figure 5. Semantic artefacts adoption in digital twins and decision support systems based on literature review

6.4 (4) What types of digital twins and decision support systems have been developed so far in the wind energy785

domain, and how can these systems be improved by more widespread adoption of common semantic artefacts?

For the purpose of this section, a systematic review of the publications regarding decision support systems and digital twins

in the wind energy domain has been performed. A search of the Scopus database using the query (("decision support system"

OR "expert system" OR "digital twin" ) AND (“wind energy” OR "wind turbine" OR "wind plant" OR "wind power plant"))

yielded 532 results on first of August 2023. After removing "false positives", i.e. papers that did not actually relate to any790

of the queried topics, and selecting the results relevant to the question posed, the remaining 181 results have been compiled

in Figure 5 and classified based on the modelled component or assembly, as well as the functional level of the DT system

(Supervisory, Operational, Simulation-Prediction, Intelligent-Learning, Autonomous-Management) (Wagg et al., 2020). The

levels differ in the integration of datasets, starting from signal conditioning, including metadata, up to using ontologies. Further

distinctions are made by e.g. the level of integration of numerical models.795

Out of the 181 results, 111 of them cover topics related to digital twin implementations, and the remaining are related to deci-

sion support systems. Most digital twin implementations were found to belong to the functional levels "Supervisory" (26 out of

111), "Operational" (22 out of 111) or "Simulation-Prediction" (60 out of 111). Only three papers belong to the functional lev-

els "Intelligent-Learning" (Chatterjee and Dethlefs, 2020; Li et al., 2021) and "Autonomous-Management" (Chavero-Navarrete

et al., 2019).800

Generally, it can be seen that there is a lack of adoption of semantic artefacts in the research of digital twin and decision

support systems, reflected by the low number of papers that use them (35 out of 181). The research of digital twins is focused

on the details of the analytic methodologies that are implemented in the digital twin rather than focusing on utilising semantic

artefacts. Therefore it can be concluded that there is a low level of adoption of semantic artefacts and of digital twins with

intelligent or autonomous features in the wind energy sector.805
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7 Recommendations

As digitalisation within the wind energy sector matures, we anticipate the current corpus of ontologies, schemas, and data

models to develop and grow. The wind energy knowledge engineering ecosystem, including semantic artefacts, tools and

applications, and actors will evolve to enable and support comprehensive data management and analysis throughout the wind

energy sector. There are, however, several essential requisites for this ecosystem to be healthy and thriving, which could be810

identified in this work and which are described below. They are divided into three categories: (1) Organisation and Diversity,

(2) Productivity and (3) Resilience.

7.0.1 Organisation and Diversity

The digitalisation process should cater to the distinct needs of the manifold stakeholders in the wind energy landscape.

– Stakeholder analysis: A thorough taxonomy of wind energy stakeholders and their activities will aid in discerning use-815

cases. This builds on the groundwork laid by Barber et al. (2023c), but broadens the scope to incorporate entities like

public groups, NGOs, and governments. Currently, based on our review, the digitalisation process seems to overlook

interests and use cases of the most of stakeholder groups with the exception of wind turbine producers (OEMs) and

energy producers.

– Inclusive stakeholder engagement: Creation of public forums and collaborations are vital for the community growth820

and development. Examples of such activities are the WeDoWind framework, which incentivises data sharing via "chal-

lenges" set by data providers (Barber et al., 2022, 2023a, b), and IEA Wind Task 43, which aims to accelerate digital

transformation in the wind sector by acting as a catalyst of open collaboration14.

– Comprehensive digitalisation of the entire wind energy sector: It is pivotal to consider every stage of the wind

energy project life cycle. Currently, emphasis largely revolves around the Operation and Maintenance phase. Task and825

Application ontologies catering to other stages, including end-of-life and financial activities, must be developed.

– Balancing expressiveness with simplicity: Depending on the use case, the semantic artefacts might require different

expressiveness or different paradigm (e.g. OWA vs. CWA) adoption. Not all activities require a definition of a fully

developed ontology. In many cases, a controlled vocabulary of terms, a taxonomy or a schema would be more adequate.

This should be assessed by the community during the initial stages of the semantic artefact development.830

7.0.2 Productivity

Productivity encapsulates the community’s prowess in generating and innovating new semantic artefacts and tools that can

respond to ever-evolving sector needs. The ability to continually produce these new resources ensures that the sector not

only remains at the forefront of technology but also proactively addresses emergent challenges, adding significant value to all

14https://www.ieawindtask43.org/
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stakeholders. In addition to creation of new semantic artefacts and AI-tools, a productive ecosystem should streamline existing835

workflows and maintain effectiveness and efficiency of data and knowledge management processes.

– Generation of new semantic artefacts and standards: Development of new semantic artefacts of various expressive-

ness based on stakeholder use cases (or "pain points") is paramount for successful digitalisation. This is aligned with

IEA Wind Task 43 digitalisation activities, within which the creation of ontology and schema development groups is

envisioned. For reference, BioPortal hosts 1065 semantic artefacts, which is almost two orders of magnitude more than840

number of wind energy domain semantic artefacts reviewed in this work. Some of the ontologies and schemas already

proposed for development within IEA Wind Task 43 are reported in Table 6

– Cross-pollination: The increased productivity can be achieved by utilising expertise from diverse groups within the

wind energy domain, as well as other industries that are successfully undergoing digitalisation, such as bio-med and

e-commerce through ontology re-use and alignment. As highlighted by this review, currently there are no efforts that845

seek to re-use and align semantic artefact within the wind energy domain. Wind energy community should consider

top level, cross-domain, and related domain ontologies that are already well established and accepted within respective

communities for ontology reuse. The infra-domain alignment of wind energy semantic artefacts can significantly improve

the efficiency and quality of data analysis. For instance, as has been noted in this present work, the alignment of various

taxonomies of wind turbine parts can be performed with relatively minimal effort, while offering immediate payback.850

The alignment of wind energy domain semantic artefacts with relevant ontologies outside of the wind energy domain

also may offer significant benefits. For example, alignment with Global City Indicator Energy Ontologies can be useful

for use cases relative to public and government types of stakeholders.

– Information access and transparent decision-making: Creation of web pages and applications that interact with wind

energy domain knowledge bases and provide various stakeholders with information of interest. Here the topics such as855

ontology based data integration and data management play an important role.

– Automation: Development of new tools for AI systems. This, as well, is in line with IEA Wind task 43 roadmap.

Workflow development.

7.0.3 Resilience

Resilience ensures that the ecosystem will adapt and evolve in the face of challenges, ensuring its longevity and relevance. For860

the wind energy sector, it involves creating robust and flexible knowledge infrastructures that can accommodate technological

advancements, shifting stakeholder needs, and external disruptions.

– FAIR principles: Adherence to FAIR principles can be facilitated by use of Semantic Web technology stacks and

Linked data. An example of such an effort, which would directly benefit the wind energy community, is the creation of

an ontology hosting catalogue for the technology sciences.865
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– Maintenance: Adoption of Free Open Source Software (FOSS) community practices and technologies (such as Git) can

aid significantly in ensuring long-term support and the sustainable development of knowledge engineering applications

for the wind energy sector. This is vital, as many of the existing semantic artefacts reviewed are still under development,

while others would benefit from further development and improvement after methodological evaluation and assessment.

Aspects related to culture and coopetition are also important to consider for a healthy and thriving wind energy knowledge870

engineering ecosystem. These aspects relate to some of the key challenges in the digitalisation of wind energy recently in-

troduced in a review paper by Clifton et al. (2023). The topic of culture involves, for example, developing and maintaining

collaborative organisational cultures, combining staff skills in new ways, enhancing communication skills, developing change

processes, and increasing diversity. The topic of coopetition involves enabling cooperation, collaboration, and competition

between organisations. This means working together to create marketplaces or business opportunities that would not other-875

wise exist and that are mutually beneficial. A discourse on these elements, however, transcends the ambit of this knowledge

engineering review.

8 Conclusions

The wind energy sector is amidst the global transformative phase of increased automation and rapid digitalisation. While the

digital transformation is paving the way for advancements such as AI-powered digital twins and decision support systems, in880

the wind energy domain, challenges remain, particularly in the realm of converting raw data into meaningful domain knowledge

that is both humanly and machine understandable. A significant part of this challenge is the lack of widespread expertise and

tools in data management and knowledge engineering, leading to underutilised, undervalued, and fragmented data often void

of context. The current work has attempted to bridge this knowledge gap by shedding light on the relevance and utility of

knowledge engineering for the wind energy domain. It has presented a coherent synthesis of existing works in knowledge885

engineering and representation, tailored for wind energy experts. Through a systematic review, this study also underscores

the pressing need for an inclusive approach that caters to a wide range of stakeholders, for creation of new semantic artefacts

and data management tools, and for a robust infrastructure with a focus on sustainable development to ensure resilience.

However, true progression can only be realised when collaborative efforts within the wind energy community are intensified.

This involves not just internal coordination but also leveraging insights from other sectors that have already navigated their890

digital transformation and have effectively utilised knowledge engineering methods and technologies. Existing efforts such as

IEA Wind Task 43 are commendable initiatives in this direction, providing a foundational starting point. The semantic artefacts

proposed for development in this review, once published, will be found on the IEA Wind Task 43 GitHub Page15 and dedicated

ontology hosting portal. Embracing these initiatives and fostering collaboration will undoubtedly steer the wind energy sector

towards a future that maximises the potential provided by digital transformation.895

15https://github.com/IEA-Task-43

35

https://doi.org/10.5194/wes-2023-173
Preprint. Discussion started: 3 January 2024
c© Author(s) 2024. CC BY 4.0 License.



Name Expressiveness Description and purpose

Vocabulary of SCADA Terms Vocabulary
Controlled vocabulary of terms created with Semantic Web technologies and published online.
Assigns URIs to the SCADA terms in accordance with 61400-25. These URIs can be used to
describe SCADA data with RDF.

Wind Turbine System
Components Taxonomy

A classification of wind turbine components using SKOS data model. This classification can
be adopted for various tasks and applications (e.g. reliability analysis) requiring minimal onto-
logical commitment.

Wind Energy Project
Life Cycle Stages Taxonomy A classification of a wind energy project life cycle stages. This classification can be use in any

context that requires an organisation of data based on life cycle stage criteria.

Wind Energy Stakeholders Taxonomy A classification of wind energy domain actors and roles. Forms a basis for a comprehensive
analysis of stakeholder needs. Additionally, can be used for Dublin Core Audience1 types.

Wind Energy Activities Taxonomy
Improved and more comprehensive taxonomy of wind energy activities based on WEAVE. Can
be used for use-case driven analysis of stakeholder needs and in definition of Dublin Core
Subject2 property.

Blade Damage Taxonomy
A classification and controlled vocabulary to describe types of wind turbine blade damage.
Possible use cases include, but not limited to, uniform monitoring and maintenance reporting,
data tagging (e.g. photographic data, SHM data etc), context aware data analysis etc.

Airfoil Data Model Schema
A schema specifying wind turbine airfoil characteristics. The primary purpose is serialisation,
validation and exchange of data. This can be used in the development of software applications
that model airfoil aerodynamics and workflows that involve aerodynamic data.

Wind Turbine System
Specification Schema A schema specifying wind turbine characteristics used for serialisation, validation, exchange of

data, and software application development.

Wind Turbine System
Sensors Schema Description of sensors that are installed on wind turbines for monitoring purposes. This meta-

data can be included alongside the data generated by the sensor in machine readable format.

Power Curve Data Schema Specification of wind turbine power curve data with JSON Schema. The primary use of the
schema is during serialisation, validation and exchange of data.

Wind Turbine Coordinate
Systems

Schema /
Ontology

Formal description and URIs for coordinate systems defined for a generic wind turbine in ac-
cordance with IEC/TS 61400-13. These coordinate systems can be used to define the location
of the wind turbine components, damages, or installed sensors.

Wind Turbine System
Ontology (WTSO) Ontology

Ontological representation of a wind turbine. Creation of Knowledge Bases containing infor-
mation about wind turbine systems. Lower level conceptualisations can be aligned with this
ontology.

Table 6. Semantic artefacts proposed for development within IEA Wind Task 43

1http://purl.org/dc/terms/audience
2http://purl.org/dc/elements/1.1/subject
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Appendix A

A1

Here we provide several examples of statements made in modelling languages, that are commonly used in knowledge engi-

neering context.

A1.1 RDF Schema (RDFS)900

RDF Schema provides a basic type system for RDF. It introduces the concept of classes and properties, allowing for the
definition of vocabularies and a limited form of structure to be added to RDF data. For instance, using RDFS, it is possible to
define hierarchies of classes and properties, specify the domain and range of properties, and declare subclasses or subproperties.
For example, the statement:

ex:Aventa_AV-7 rdf:type ex:WindTurbine905

made in RDF can be semantically enriched by stating that Wind Trubine is a class.

@prefix ex: <http://example.com/resource/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

910

ex:WindTurbine rdf:type rdfs:Class .

ex:Aventa_AV-7 rdf:type ex:WindTurbine .

A1.2 Web Ontology Language (OWL)

Web ontology language is a formal language based on the Description Logic representation formalism. Developed by the915

W3C, OWL is built on top of RDF and extends its expressiveness by providing additional vocabulary for defining complex
relationships, classes, properties, and restrictions. OWL enables a higher level of semantic expressiveness compared to RDF
and RDF Schema (RDFS), allowing for more sophisticated reasoning and inferencing capabilities. For example we can express
rated power as datatype property, and constrain it to be a float:

@prefix ex: <http://example.com/resource/> .920

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

925

ex:WindTurbine rdf:type owl:Class .

ex:Aventa_AV-7 rdf:type ex:WindTurbine .

ex:ratedPower rdf:type owl:DatatypeProperty ;

rdfs:domain ex:WindTurbine ;

rdfs:range xsd:float .930

ex:Aventa_AV-7 ex:ratedPower "6.2"^^xsd:float .
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There are several sublanguages of OWL with varying levels of expressiveness and computational complexity, including

OWL Lite, OWL DL, and OWL Full. OWL DL, which is based on description logic, offers a balance between expressiveness

and computational tractability, making it suitable for many applications.

A1.3 Shapes Constraint Language (SHACL)935

Shapes Constraint Language (SHACL) is a World Wide Web Consortium (W3C) specification for validating and describing

RDF graphs. SHACL allows for the definition of constraints that can be used to validate RDF data against a set of conditions.

SHACL’s validation capability makes it particularly suited for ensuring that data adheres to a particular shape or structure, hence

the name. In addition to validation, SHACL can be used for data modelling and to guide the process of data transformation and

integration. For example, the Aventa AV-7 wind turbine described before can be validated by a SHACL shape like:940

@prefix ex: <http://example.com/resource/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix sh: <http://www.w3.org/ns/shacl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

945

ex:WindTurbineShape a sh:NodeShape ;

sh:targetClass ex:WindTurbine ;

sh:property [

sh:path ex:ratedPower ;

sh:datatype xsd:float ;950

] .

This SHACL shape defines that every instance of the class "WindTurbine" must have a property "ratedPower" which has to

be of datatype float. This way, SHACL helps to ensure data integrity and consistency by providing a mechanism for enforcing

data constraints.

A1.4 JSON Schema955

JSON Schema represents a vocabulary permitting annotation and validation of JSON data. Unlike RDF, JSON stores informa-
tion as attribute-value pairs. This type of data structure, when nested can be visualised as a tree rather than a labeled graph.
JSON Schema, hence, defines the structure of JSON data and validates JSON data against defined schemas. It supports various
constraints, such as data types, enumerations, pattern matching, optional/required properties, and array item uniqueness. For
example, the information about Aventa AV-7 wind tubine can be stored in JSON format as following:960

{

"WindTurbine":{

"model":"Aventa AV-7"

"ratedPower":6.2

}965

}

The related schema would look like:
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{

"$schema": "http://json-schema.org/draft-07/schema#",

"title": "Wind Turbine",970

"description": "Schema for basic Wind Turbine attributes",

"type": "object",

"properties": {

"WindTurbine": {

"type": "object",975

"properties": {

"model": {

"type": "string",

"description": "The model of the Wind Turbine"

},980

"ratedPower": {

"type": "number",

"description": "The rated power of the Wind Turbine in kilowatts"

}

},985

"required": ["model", "ratedPower"]

}

},

"required": ["WindTurbine"]

}990

Although primarily designed for JSON data validation, its use for more intricate data modeling tasks has been increasing,

indicating its evolution towards a comprehensive ontology language.

A1.5 YAML Schema

YAML Schema is a tool dedicated to defining the structure of YAML documents. YAML, a human-friendly data serialization
standard, is extensively used in configuration files and applications where data storage or transmission is involved. YAML995

Schema bears several similarities to JSON Schema, but it is designed specifically for the YAML data format. This schema
validates YAML documents, ensuring compliance with a predefined structure and specific criteria. YAML and YAML Schema
are commonly used when data and schema readability is paramount. Below is a YAML Schema serialisation of the same
information as one described before by JSON Schema.

$schema: http://json-schema.org/draft-07/schema#1000

title: Wind Turbine

description: Schema for basic Wind Turbine attributes

type: object

properties:

WindTurbine:1005

type: object

properties:

model:
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type: string

description: The model of the Wind Turbine1010

ratedPower:

type: number

description: The rated power of the Wind Turbine in kilowatts

required:

- model1015

- ratedPower

required:

- WindTurbine

A1.6 XML Schema

XML Schema, also known as XSD (XML Schema Definition), is a World Wide Web Consortium (W3C) recommendation1020

that prescribes formal descriptions of elements in an Extensible Markup Language (XML) document. It serves to describe and
validate the structure and content of XML data. XML Schema supports namespaces, complex data types, inheritance (through
extension and restriction), and constraints on values and relationships between elements. Its wide use spans several industries,
including publishing, telecommunications, and e-commerce. However due complexity of XML syntax, this schema languages
is much less intuitive and is not as easily humanly readable as compared to JSON or YAML Schema.1025

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="WindTurbine">

<xs:annotation>

<xs:documentation>A representation of a Wind Turbine.</xs:documentation>1030

</xs:annotation>

<xs:complexType>

<xs:attribute name="model" type="xs:string">

<xs:annotation>

<xs:documentation>The model of the Wind Turbine.</xs:documentation>1035

</xs:annotation>

</xs:attribute>

<xs:attribute name="ratedPower" type="xs:float">

<xs:annotation>

<xs:documentation>The rated power of the Wind Turbine in megawatts.</xs:documentation>1040

</xs:annotation>

</xs:attribute>

</xs:complexType>

</xs:element>

</xs:schema>1045
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A2

A2.1 Serialisation formats

OWL and RDFS ontologies can be serialised for storage using a variety of formats. These formats enable the representation

of knowledge in a machine-readable and standardized way. RDF, as the foundation of the Semantic Web, can be serialized in

various formats such as RDF/XML, Turtle (Terse RDF Triple Language), N-Triples, and JSON-LD.1050

RDF/XML was the first standardized serialisation format for RDF, but its verbosity and complexity led to the development

of other formats such as Turtle and N-Triples, which offer more human-readable syntax. JSON-LD (JSON for Linked Data)

has gained popularity as it combines the simplicity and widespread use of JSON with the ability to express RDF data. OWL,

being an extension of RDF, can also be serialised using the aforementioned RDF serialisation formats. However, OWL has its

own serialisation formats as well, such as OWL/XML and Functional-Style Syntax (also known as OWL Functional Syntax).1055

OWL/XML is an XML-based syntax specifically designed for expressing OWL ontologies, while Functional-Style Syntax is

a human-readable, text-based format that closely follows the structure of the OWL 2 specification. The choice of serialization

format depends on factors such as readability, compatibility with existing tools, and ease of parsing and processing.

A2.2 JavaScript Object Notation for Linked Data (JSON-LD)

JSON-LD is a lightweight data interchange format that extends JSON to provide a means for encoding Linked Data using1060

standard JSON conventions. JSON-LD is designed to be easy to read and write by humans, as well as simple to parse and
generate by machines. It is developed by the World Wide Web Consortium (W3C) and provides a way to represent RDF
data model in JSON. JSON-LD is particularly useful for web developers who want to incorporate structured data into web
applications and APIs while leveraging the existing JSON tools and libraries. JSON-LD introduces a notion of a context, which
allows defining short aliases for long IRIs (Internationalized Resource Identifiers) used in RDF, simplifying the representation1065

of RDF triples in JSON. It also supports the definition of data types, language tags for string values, and nested JSON objects
to represent complex relationships and structures. JSON-LD serialisation example:

{

"@context": {

"schema": "https://schema.org/",1070

"geo": "http://www.w3.org/2003/01/geo/wgs84_pos#"

},

"@type": "schema:EducationalOrganization",

"@id": "https://www.ost.ch",

"schema:name": "OST - Ostschweizer Fachhochschule",1075

"schema:owns": {

"@type": "schema:Product",

"@id": "urn:ost:aventa:av-7",

"schema:name": "Aventa AV-7 Wind Turbine",

"schema:manufacturer": {1080

"@type": "schema:Organization",

"@id": "https://en.wind-turbine-models.com/manufacturers/316-aventa",
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"schema:name": "Aventa"

},

"schema:model": {1085

"@type": "schema:ProductModel",

"@id": "https://en.wind-turbine-models.com/turbines/1529-aventa-av-7",

"name":"AV-7"

},

"geo:location": {1090

"@type": "geo:Point",

"geo:lat": "47.52000",

"geo:long": "8.68236"

}

}1095

}

Figure A1. Aventa AV-7 described using JSON-LD, and visualised as a graph.
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Appendix B

FAIR
Principle

Semantic Web Technology Enablement

Findable
F1 URIs, especially HTTP URIs are globally unique and can be persistent. This requirement is similar to the first LD

principle, even though persistence is not specifically addressed by LD.
F2 Rich metadata models are developed and adopted by communities, for their specific domain. These models can be

published on the web as LD and referred to, when describing the data.
F3 RDF triples connect unique identifiers (URIs) with well-defined properties to their respective values.
F4 RDF data can be stored in Triplestores which are optimized for semantic queries using SPARQL. This requirement

along with F2 and F3 are similar to the third LD principle.
Accessible
A1.1 Semantic web technologies are built on open standards such as HTTP and RDF. This requirement is simmilar to the

second linked data principle.
A1.2 Web protocols like HTTPS include provisions for authentication and authorization.
A2 Persistent URIs and versioning methodologies ensure that metadata remain accessible. Metadata models can be pub-

lished on third party websites like schema.org, more expressive semantic artefacts can be published on ontology hosting
websites like the ones powered by OntoPortal. This requirement has no equivalent in LD principles

Interoperable
I1 RDF, RDFS, and OWL are formal languages that are broadly applicable for knowledge representation.
I2 Semantic web enables the use of vocabularies and taxonomies through standard data models such as SKOS.
I3 RDF’s linking capability enables metadata to include qualified references to other metadata. This requirement is similar

to the fourth LD principle.
Reusable
R1.1 Metadata in RDF can include licensing information using appropriate vocabularies. In general, LD has evolved into the

direction of open data, meanwhile FAIR principles can be applied to data subject to any explicitly defined license.
R1.2 Provenance information can be recorded using cross-domain, community accepted vocabularies such as PROV-O.
R1.3 The semantic web supports the use of domain-specific ontologies, which can be developed according to community

standards. This requirement is similar to the third LD principle.
Table A1. FAIR Principles and Semantic Web Technology Enablement

Author contributions. Conceptualisation, Y.M. and J.D.; methodology, Y.M. and J.D.; investigation, Y.M., T.C., J.D., M.W., J.Q., and A.M.S.;

data curation, Y.M.; writing—original draft preparation, Y.M.; writing—review and editing, Y.M., T.C., J.D., M.W., C.H., J.Q., A.M.S., I.A.,

J.C., E.C., and S.B.; visualisation, Y.M.; supervision, E.C. and S.B.; project administration, S.B.; funding acquisition, S.B. All authors have1100

read and agreed to the published version of the manuscript.

Competing interests. The contact author has declared that none of the authors has any competing interests.

Acknowledgements. A portion of this work is funded by the BRIDGE Discovery Programme of the Swiss National Science Foundation and

Innosuisse (Project Number 40B2-0_187087). A portion of this work was supported by the Wind Data Hub funded by U.S. Department

of Energy, Office of Energy Efficiency and Renewable Energy’s Wind Energy Technologies Office operated and maintained by Pacific1105

Northwest National Laboratory at https://a2e.energy.gov.

43

https://doi.org/10.5194/wes-2023-173
Preprint. Discussion started: 3 January 2024
c© Author(s) 2024. CC BY 4.0 License.



References

AIAA and AIA: Digital Twin: Definition & Value - An AIAA and AIA Position Paper, https://www.aiaa.org/advocacy/Policy-Papers/

Institute-Position-Papers, [Accessed on 1 Oct 2023], 2020.

Akerkar, R. and Sajja, P.: Knowledge-based systems, Jones & Bartlett Publishers, 2009.1110

Andersen, G. and Aijmer, K.: Pragmatics of society, vol. 5, Walter de Gruyter, 2011.

Andriotis, C. P., Papakonstantinou, K. G., and Chatzi, E. N.: Value of structural health information in partially observable stochastic environ-

ments, Structural Safety, 93, 102 072, https://doi.org/https://doi.org/10.1016/j.strusafe.2020.102072, 2021.

Angele, K. and Angele, J.: JSON towards a simple Ontology and Rule Language, in: Proceedings of the 15th International Rule Challenge,

7th Industry Track, and 5th Doctoral Consortium @ RuleML+RR 2021, edited by Soylu, A., Nezhad, A. T., Nikolov, N., Toma, I., Fensel,1115

A., and Vennekens, J., vol. 2956 of CEUR Workshop Proceedings, CEUR, Leuven, Belgium (virtual due to Covid-, http://ceur-ws.org/

Vol-2956/#paper8, 2021.

Arista, R., Zheng, X., Lu, J., and Mas, F.: An Ontology-based Engineering system to support aircraft manufacturing system design, Journal

of Manufacturing Systems, 68, 270–288, https://doi.org/10.1016/j.jmsy.2023.02.012, 2023.

Artigao, E., Martín-Martínez, S., Honrubia-Escribano, A., and Gómez-Lázaro, E.: Wind turbine reliability: A1120

comprehensive review towards effective condition monitoring development, Applied Energy, 228, 1569–1583,

https://doi.org/https://doi.org/10.1016/j.apenergy.2018.07.037, 2018.

Aschenbrenner, M. and Winder, G. M.: Planning for a sustainable marine future? Marine spatial planning in the German exclusive economic

zone of the North Sea, Applied Geography, 110, https://doi.org/10.1016/j.apgeog.2019.102050, 2019.

Barber, S., Lima, L. A. M., Sakagami, Y., Quick, J., Latiffianti, E., Liu, Y., Ferrari, R., Letzgus, S., Zhang, X., and Hammer, F.: Enabling1125

Co-Innovation for a Successful Digital Transformation in Wind Energy Using a New Digital Ecosystem and a Fault Detection Case Study,

Energies, 15, https://doi.org/10.3390/en15155638, 2022.

Barber, S., Hammer, F., and Henderson, C.: Can data sharing really provide added value? Practical data sharing recommendations for the

wind energy sector, Journal of Physics: Conference Series, 2507, 012 003, https://doi.org/10.1088/1742-6596/2507/1/012003, 2023a.

Barber, S., Izagirre, U., Serradilla, O., Olaizola, J., Zugasti, E., Aizpurua, J. I., Milani, A. E., Sehnke, F., Sakagami, Y., and1130

Henderson, C.: Best Practice Data Sharing Guidelines for Wind Turbine Fault Detection Model Evaluation, Energies, 16,

https://doi.org/10.3390/en16083567, 2023b.

Barber, S., Sempreviva, A. M., Sheng, S., Farren, D., and Zappalá, D.: A use-case-driven approach for demonstrating the added value of

digitalisation in wind energy, Journal of Physics: Conference Series, 2507, 012 002, https://doi.org/10.1088/1742-6596/2507/1/012002,

2023c.1135

Booshehri, M., Emele, L., Flügel, S., Förster, H., Frey, J., Frey, U., Glauer, M., Hastings, J., Hofmann, C., Hoyer-Klick, C., Hülk, L., Kleinau,

A., Knosala, K., Kotzur, L., Kuckertz, P., Mossakowski, T., Muschner, C., Neuhaus, F., Pehl, M., Robinius, M., Sehn, V., and Stappel,

M.: Introducing the Open Energy Ontology: Enhancing data interpretation and interfacing in energy systems analysis, Energy and AI, 5,

100 074, https://doi.org/10.1016/j.egyai.2021.100074, 2021.

Bortolotti, P., Bay, C., Barter, G., Gaertner, E., Dykes, K., McWilliam, M., Friis-Moller, M., Molgaard Pedersen, M., and Zahle, F.: System1140

Modeling Frameworks for Wind Turbines and Plants: Review and Requirements Specifications, https://doi.org/10.2172/1868328, 2022.

44

https://doi.org/10.5194/wes-2023-173
Preprint. Discussion started: 3 January 2024
c© Author(s) 2024. CC BY 4.0 License.



Bremere, I. and Indriksone, D.: Regional stakeholder maps and analyses of decision flows. WP3.1, Baltic Energy Areas – A Plan-

ning Perspective (BEA-APP) project., https://www.balticenergyareas.eu/images/achievements/wp3.1_regional_stakeholder_maps_and_

ananalyses_of_decision_flows.pdf, [Accessed 15-Jul-2023], 2017.

Bunte, A., Li, P., and Niggemann, O.: Mapping data sets to concepts using machine learning and a knowledge based approach, vol. 2, p. 4301145

– 437, SciTePress, https://doi.org/10.5220/0006590204300437, 2018.

Cann, R., Kempson, R., and Gregoromichelaki, E.: Semantics: An Introduction to Meaning in Language, Cambridge University Press, 2009.

Chah, N.: OK Google, What Is Your Ontology? Or: Exploring Freebase Classification to Understand Google’s Knowledge Graph,

https://doi.org/10.48550/ARXIV.1805.03885, 2018.

Chatterjee, J. and Dethlefs, N.: Temporal Causal Inference in Wind Turbine SCADA Data Using Deep Learning for Explainable AI, Journal1150

of Physics: Conference Series, 1618, 022 022, https://doi.org/10.1088/1742-6596/1618/2/022022, 2020.

Chavero-Navarrete, E., Trejo-Perea, M., Jáuregui-Correa, J. C., Carrillo-Serrano, R. V., and Ríos-Moreno, J. G.: Expert Con-

trol Systems for Maximum Power Point Tracking in a Wind Turbine with PMSG: State of the Art, Applied Sciences, 9,

https://doi.org/10.3390/app9122469, 2019.

Chun, S., Jung, J., Jin, X., Seo, S., and Lee, K.-H.: Designing an integrated knowledge graph for smart energy services, The Journal of1155

Supercomputing, 76, 8058–8085, https://doi.org/10.1007/s11227-018-2672-3, 2018.

Clark, T.: How to communicate and collaborate on data: easy- to-use tools and techniques for eliminating overwhelm, confusion and ambi-

guity, https://doi.org/10.5281/zenodo.7928816, 2022.

Clark, T.: Powerful Power Curves: A production-proven, open- source schema for wind turbine power curves,

https://doi.org/10.5281/zenodo.7940068, 2023.1160

Clifton, A., Barber, S., Bray, A., Enevoldsen, P., Fields, J., Sempreviva, A. M., Williams, L., Quick, J., Purdue, M., Totaro, P., and Ding, Y.:

Grand challenges in the digitalisation of wind energy, Wind Energy Science, 8, 947 – 974, https://www.scopus.com/inward/record.uri?

eid=2-s2.0-85163589283&doi=10.5194%2fwes-8-947-2023&partnerID=40&md5=89d0531fb39d1e6b90620a7d8ea870cb, 2023.

Codd, E. F.: The Relational Model for Database Management: Version 2, Addison-Wesley Longman Publishing Co., Inc., USA, ISBN

0201141922, 1990.1165

Davis, R.: Knowledge-based systems, Science, 231, 957–963, 1986.

De Baas, A., Nostro, P. D., Friis, J., Ghedini, E., Goldbeck, G., Paponetti, I. M., Pozzi, A., Sarkar, A., Yang, L., Zaccarini, F. A.,

and Toti, D.: Review and Alignment of Domain-Level Ontologies for Materials Science, IEEE Access, 11, 120 372–120 401,

https://doi.org/10.1109/ACCESS.2023.3327725, 2023.

De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., and Rosati, R.: Using Ontologies for Semantic Data Integration, pp. 187–202, Springer1170

International Publishing, Cham, ISBN 978-3-319-61893-7, https://doi.org/10.1007/978-3-319-61893-7_11, 2018.

De Nicola, A., Missikoff, M., and Navigli, R.: A Proposal for a Unified Process for Ontology Building: UPON, in: Database and Expert Sys-

tems Applications, edited by Andersen, K. V., Debenham, J., and Wagner, R., pp. 655–664, Springer Berlin Heidelberg, Berlin, Heidelberg,

ISBN 978-3-540-31729-6, 2005.

de Vivero, J. L. S.: An exercise in Stakeholder Analysis for a hypothetical offshore wind farm in the Gulf of Cadix, 2023.1175

Ding, Y.: Data Science for Wind Energy, Chapman and Hall/CRC, https://doi.org/10.1201/9780429490972, 2019.

Dourgnon-Hanoune, A., Dang, T., Salaün, P., and Bouthors, V.: An ontology for I&C knowledge using trees of Porphyry, p. 86 – 92,

https://doi.org/10.1109/INDIN.2010.5549458, 2010.

45

https://doi.org/10.5194/wes-2023-173
Preprint. Discussion started: 3 January 2024
c© Author(s) 2024. CC BY 4.0 License.
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